
Recreation

divided by 9 when a certain one of its digits is deleted,
resulting number is again divisible by 9.

actually dividing the resulting number by 9 results in
another digit.

integers satisfying the conditions of this problem.

17:51:38 2018 CS61B: Lecture #11 1

Announcements

autograder has been running. Check the Scores tab for

resubmit. See the Course Info tab.

particular, many people need to do style fixes! Use make style

galaxy/*.java to check before submission.

17:51:38 2018 CS61B: Lecture #11 2

Project Ethics

Alone: All major submitted non-skeleton code should be writ-
alone.

Possess or Share Code: Before a project deadline, you should
possession of solution code that you did not write, nor

your own code to others in the class.

Sources: When you receive significant assistance on a
from someone else (other than the staff), cite that assis-

somewhere in your source code.

17:51:38 2018 CS61B: Lecture #11 3

Ethical Collaboration

of approaches for solving a problem.

or receiving significant ideas towards a problem solution,

of specific syntax issues and bugs in your code.

snippets of code that you find online for solving tiny
(e.g. googling “uppercase string java” may lead you to some

that you copy and paste. Cite these.

Great Caution:

someone else’s project code to assist with debugging.

someone else’s project code to understand a particular
of a project. Generally unwise though, due to the danger

plagiarism.

17:51:38 2018 CS61B: Lecture #11 4

Unethical Collaborations

another student’s project code in any form before a final
distributing your own.

project solution code that you did not write yourself be-
deadline (e.g., from github, or from staff solution code

somewhere). Likewise, distributing such code.

17:51:38 2018 CS61B: Lecture #11 5

Lecture #11: Examples: Comparable & Reader

17:51:38 2018 CS61B: Lecture #11 6



Comparable

provides an interface to describe Objects that have
order on them, such as String, Integer, BigInteger and

interface Comparable { // For now, the Java 1.4 version

Returns value <0, == 0, or > 0 depending on whether THIS is

==, or > OBJ. Exception if OBJ not of compatible type. */

compareTo(Object obj);

a general-purpose max function:

largest value in array A, or null if A empty. */

static Comparable max(Comparable[] A) {

(A.length == 0) return null;

Comparable result; result = A[0];

i = 1; i < A.length; i += 1)

(result.compareTo(A[i]) < 0) result = A[i];

result;

will return maximum value in S if S is an array of Strings,
kind of Object that implements Comparable.

17:51:38 2018 CS61B: Lecture #11 7

Examples: Implementing Comparable

representing a sequence of ints. */

IntSequence implements Comparable {

int[] myValues;

int myCount;

int get(int k) { return myValues[k]; }

int compareTo(Object obj) {

IntSequence x = (IntSequence) obj; // Blows up if obj not an IntSequence

int i = 0; i < myCount && i < x.myCount; i += 1) {

(myValues[i] < x.myValues[i]) {

return -1;

else if (myValues[i] > x.myValues[i]) {

return 1;

myCount - x.myCount; // <0 iff myCount < x.myCount

17:51:38 2018 CS61B: Lecture #11 8

Implementing Comparable II

possible to add an interface retroactively.

IntSequence did not implement Comparable, but did implement
(without @Override), we could write

ComparableIntSequence extends IntSequence implements Comparable {

then “match up” the compareTo in IntSequence with that
Comparable.

17:51:38 2018 CS61B: Lecture #11 9

Java Generics (I)

shown you the old Java 1.4 Comparable. The current version
newer feature: Java generic types:

interface Comparable<T> {
compareTo(T x);

like a formal parameter in a method, except that its
type.

IntSequence (no casting needed):

IntSequence implements Comparable<IntSequence> {

Override

int compareTo(IntSequence x) {

(int i = 0; i < myCount && i < x.myCount; i += 1) {

if (myValues[i] < x.myValues[i]) ...

return myCount - x.myCount;

17:51:38 2018 CS61B: Lecture #11 10

Example: Readers

java.io.Reader abstracts sources of characters.

present a revisionist version (not the real thing):

interface Reader { // Real java.io.Reader is abstract class

Release this stream: further reads are illegal */

close();

as many characters as possible, up to LEN,

BUF[OFF], BUF[OFF+1],..., and return the

number read, or -1 if at end-of-stream. */

(char[] buf, int off, int len);

Short for read(BUF, 0, BUF.length). */

(char[] buf);

and return single character, or -1 at end-of-stream. */

();

new Reader(); it’s abstract. So what good is it?

17:51:38 2018 CS61B: Lecture #11 11

Generic Partial Implementation

to their specifications, some of Reader’s methods are re-

this with a partial implementation, which leaves key
unimplemented and provides default bodies for others.

abstract: can’t use new on it.

partial implementation of Reader. Concrete

implementations MUST override close and read(,,).

MAY override the other read methods for speed. */

abstract class AbstractReader implements Reader {

two lines are redundant.

abstract void close();

abstract int read(char[] buf, int off, int len);

int read(char[] buf) { return read(buf,0,buf.length); }

int read() { return (read(buf1) == -1) ? -1 : buf1[0]; }

char[] buf1 = new char[1];

17:51:38 2018 CS61B: Lecture #11 12



Implementation of Reader: StringReader

StringReader reads characters from a String:

StringReader extends AbstractReader {

String str;

k;

Reader that delivers the characters in STR. */

StringReader(String s) {

s; k = 0;

close() {

null;

read(char[] buf, int off, int len) {

== str.length())

return -1;

Math.min(len, str.length() - k);

str.getChars(k, k+len, buf, off);

len;

len;

17:51:38 2018 CS61B: Lecture #11 13

Using Reader

method, which counts words:
number of words in R, where a "word" is

sequence of non-whitespace characters. */

r) {

count;

count = 0;

{

r.read();

-1) return count;

(Character.isWhitespace((char) c0)

!Character.isWhitespace((char) c))

count += 1;

works for any Reader:

StringReader(someText)) // # words in someText

InputStreamReader(System.in)) // # words in standard input

FileReader("foo.txt")) // # words in file foo.txt.

17:51:38 2018 CS61B: Lecture #11 14

How It Fits Together

read(b,o,l)

read(b)

read()

...

Reader

read(b,o,l)

read(b)

read()

...

StringReader

read(b,o,l)

read(b)

read()

...

AbstractReader

extendsimplements

implements

calls

which
is really

inherited
from

calls

inherited
from

calls

overrides

Interface Concrete Class Abstract Template

17:51:38 2018 CS61B: Lecture #11 15

Lessons

interface class served as a specification for a whole set

most client methods that deal with Readers, like wc, will
Reader for the formal parameters, not a specific kind

thus assuming as little as possible.

when a client creates a new Reader will it get specific about
subtype of Reader it needs.

client’s methods are as widely applicable as possible.

AbstractReader is a tool for implementors of non-abstract
classes, and not used by clients.

library is not pure. E.g., AbstractReader is really just
Reader and there is no interface. In this example, we saw

should have done!

Comparable interface allows definition of functions that de-
a limited subset of the properties (methods) of their

(such as “must have a compareTo method”).

17:51:38 2018 CS61B: Lecture #11 16


	Recreation
	Announcements
	Project Ethics
	Ethical Collaboration
	Unethical Collaborations
	CS61B Lecture #11: Examples: Comparable & Reader
	Comparable
	Examples: Implementing Comparable
	Implementing Comparable II
	Java Generics (I)
	Example: Readers
	Generic Partial Implementation
	Implementation of Reader: StringReader
	Using Reader
	How It Fits Together
	Lessons

