
Recreation

An integer is divided by 9 when a certain one of its digits is deleted,
and the resulting number is again divisible by 9.

a. Prove that actually dividing the resulting number by 9 results in
deleting another digit.

b. Find all integers satisfying the conditions of this problem.

Last modified: Sun Sep 16 17:51:38 2018 CS61B: Lecture #11 1

Announcements

• Project 0 autograder has been running. Check the Scores tab for
results.

• Yes, you can resubmit. See the Course Info tab.

• In particular, many people need to do style fixes! Use make style

or style61b galaxy/*.java to check before submission.

Last modified: Sun Sep 16 17:51:38 2018 CS61B: Lecture #11 2

Project Ethics

Basic Rules:

1. By You Alone: All major submitted non-skeleton code should be writ-
ten by you alone.

2. Do Not Possess or Share Code: Before a project deadline, you should
never be in possession of solution code that you did not write, nor
distribute your own code to others in the class.

3. Cite Your Sources: When you receive significant assistance on a
project from someone else (other than the staff), cite that assis-
tance somewhere in your source code.

Last modified: Sun Sep 16 17:51:38 2018 CS61B: Lecture #11 3

Ethical Collaboration

Unproblematic

• Discussion of approaches for solving a problem.

• Giving away or receiving significant ideas towards a problem solution,
if cited.

• Discussion of specific syntax issues and bugs in your code.

• Using small snippets of code that you find online for solving tiny
problems (e.g. googling “uppercase string java” may lead you to some
sample code that you copy and paste. Cite these.

Requiring Great Caution:

• Looking at someone else’s project code to assist with debugging.

• Looking at someone else’s project code to understand a particular
idea or part of a project. Generally unwise though, due to the danger
of plagiarism.

Last modified: Sun Sep 16 17:51:38 2018 CS61B: Lecture #11 4

Unethical Collaborations

• Possessing another student’s project code in any form before a final
deadline, or distributing your own.

• Possessing project solution code that you did not write yourself be-
fore a final deadline (e.g., from github, or from staff solution code
found somewhere). Likewise, distributing such code.

Last modified: Sun Sep 16 17:51:38 2018 CS61B: Lecture #11 5

CS61B Lecture #11: Examples: Comparable & Reader

Last modified: Sun Sep 16 17:51:38 2018 CS61B: Lecture #11 6

Comparable

• Java library provides an interface to describe Objects that have
a natural order on them, such as String, Integer, BigInteger and
BigDecimal:

public interface Comparable { // For now, the Java 1.4 version

/** Returns value <0, == 0, or > 0 depending on whether THIS is

* <, ==, or > OBJ. Exception if OBJ not of compatible type. */

int compareTo(Object obj);

}

• Might use in a general-purpose max function:

/** The largest value in array A, or null if A empty. */

public static Comparable max(Comparable[] A) {

if (A.length == 0) return null;

Comparable result; result = A[0];

for (int i = 1; i < A.length; i += 1)

if (result.compareTo(A[i]) < 0) result = A[i];

return result;

}

• Now max(S) will return maximum value in S if S is an array of Strings,
or any other kind of Object that implements Comparable.

Last modified: Sun Sep 16 17:51:38 2018 CS61B: Lecture #11 7

Examples: Implementing Comparable

/** A class representing a sequence of ints. */

class IntSequence implements Comparable {

private int[] myValues;

private int myCount;

...

public int get(int k) { return myValues[k]; }

@Override

public int compareTo(Object obj) {

IntSequence x = (IntSequence) obj; // Blows up if obj not an IntSequence

for (int i = 0; i < myCount && i < x.myCount; i += 1) {

if (myValues[i] < x.myValues[i]) {

return -1;

} else if (myValues[i] > x.myValues[i]) {

return 1;

}

return myCount - x.myCount; // <0 iff myCount < x.myCount

}

}

Last modified: Sun Sep 16 17:51:38 2018 CS61B: Lecture #11 8

Implementing Comparable II

• Also possible to add an interface retroactively.

• If IntSequence did not implement Comparable, but did implement
compareTo (without @Override), we could write

class ComparableIntSequence extends IntSequence implements Comparable {

}

• Java would then “match up” the compareTo in IntSequence with that
in Comparable.

Last modified: Sun Sep 16 17:51:38 2018 CS61B: Lecture #11 9

Java Generics (I)

• We’ve shown you the old Java 1.4 Comparable. The current version
uses a newer feature: Java generic types:

public interface Comparable<T> {
int compareTo(T x);

}

• Here, T is like a formal parameter in a method, except that its
“value” is a type.

• Revised IntSequence (no casting needed):

class IntSequence implements Comparable<IntSequence> {

...

@Override

public int compareTo(IntSequence x) {

for (int i = 0; i < myCount && i < x.myCount; i += 1) {

if (myValues[i] < x.myValues[i]) ...

return myCount - x.myCount;

}

}

Last modified: Sun Sep 16 17:51:38 2018 CS61B: Lecture #11 10

Example: Readers

• Java class java.io.Reader abstracts sources of characters.

• Here, we present a revisionist version (not the real thing):

public interface Reader { // Real java.io.Reader is abstract class

/** Release this stream: further reads are illegal */

void close();

/** Read as many characters as possible, up to LEN,

* into BUF[OFF], BUF[OFF+1],..., and return the

* number read, or -1 if at end-of-stream. */

int read(char[] buf, int off, int len);

/** Short for read(BUF, 0, BUF.length). */

int read(char[] buf);

/** Read and return single character, or -1 at end-of-stream. */

int read();

}

• Can’t write new Reader(); it’s abstract. So what good is it?

Last modified: Sun Sep 16 17:51:38 2018 CS61B: Lecture #11 11

Generic Partial Implementation

• According to their specifications, some of Reader’s methods are re-
lated.

• Can express this with a partial implementation, which leaves key
methods unimplemented and provides default bodies for others.

• Result still abstract: can’t use new on it.

/** A partial implementation of Reader. Concrete

* implementations MUST override close and read(,,).

* They MAY override the other read methods for speed. */

public abstract class AbstractReader implements Reader {

// Next two lines are redundant.

public abstract void close();

public abstract int read(char[] buf, int off, int len);

public int read(char[] buf) { return read(buf,0,buf.length); }

public int read() { return (read(buf1) == -1) ? -1 : buf1[0]; }

private char[] buf1 = new char[1];

}

Last modified: Sun Sep 16 17:51:38 2018 CS61B: Lecture #11 12

Implementation of Reader: StringReader

The class StringReader reads characters from a String:

public class StringReader extends AbstractReader {

private String str;

private int k;

/** A Reader that delivers the characters in STR. */

public StringReader(String s) {

str = s; k = 0;

}

public void close() {

str = null;

}

public int read(char[] buf, int off, int len) {

if (k == str.length())

return -1;

len = Math.min(len, str.length() - k);

str.getChars(k, k+len, buf, off);

k += len;

return len;

}

}
Last modified: Sun Sep 16 17:51:38 2018 CS61B: Lecture #11 13

Using Reader

Consider this method, which counts words:
/** The total number of words in R, where a "word" is

* a maximal sequence of non-whitespace characters. */

int wc(Reader r) {

int c0, count;

c0 = ’ ’; count = 0;

while (true) {

int c = r.read();

if (c == -1) return count;

if (Character.isWhitespace((char) c0)

&& !Character.isWhitespace((char) c))

count += 1;

c0 = c;

}

}

This method works for any Reader:

wc(new StringReader(someText)) // # words in someText

wc(new InputStreamReader(System.in)) // # words in standard input

wc(new FileReader("foo.txt")) // # words in file foo.txt.

Last modified: Sun Sep 16 17:51:38 2018 CS61B: Lecture #11 14

How It Fits Together

wc method

· · ·
read()
· · ·

read(b,o,l)

read(b)

read()

...

Reader

read(b,o,l)

read(b)

read()

...

StringReader

read(b,o,l)

read(b)

read()

...

AbstractReader

extendsimplements

implements

calls

which
is really

inherited
from

calls

inherited
from

calls

overrides

Client Interface Concrete Class Abstract Template

Last modified: Sun Sep 16 17:51:38 2018 CS61B: Lecture #11 15

Lessons

• The Reader interface class served as a specification for a whole set
of readers.

• Ideally, most client methods that deal with Readers, like wc, will
specify type Reader for the formal parameters, not a specific kind
of Reader, thus assuming as little as possible.

• And only when a client creates a new Reader will it get specific about
what subtype of Reader it needs.

• That way, client’s methods are as widely applicable as possible.

• Finally, AbstractReader is a tool for implementors of non-abstract
Reader classes, and not used by clients.

• Alas, Java library is not pure. E.g., AbstractReader is really just
called Reader and there is no interface. In this example, we saw
what they should have done!

• The Comparable interface allows definition of functions that de-
pend only on a limited subset of the properties (methods) of their
arguments (such as “must have a compareTo method”).

Last modified: Sun Sep 16 17:51:38 2018 CS61B: Lecture #11 16

	Recreation
	Announcements
	Project Ethics
	Ethical Collaboration
	Unethical Collaborations
	CS61B Lecture #11: Examples: Comparable & Reader
	Comparable
	Examples: Implementing Comparable
	Implementing Comparable II
	Java Generics (I)
	Example: Readers
	Generic Partial Implementation
	Implementation of Reader: StringReader
	Using Reader
	How It Fits Together
	Lessons

