Integer Types and Literals

Signed?	Literals
$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Cast from int: (byte) 3 None. Cast from int: (short) 4096
No	'a' // (char) 97 ' $\backslash n$ ' // newline ((char) 10) ' lt ' // tab ((char) 8) ' $\$ ', // backslash 'A', '\101', ' $\backslash u 0041$ ' // == (char)
Yes	```123 0100 // Octal for 64 0x3f, Oxfffffffff // Hexadecimal 63,```
Yes	$\begin{aligned} & \text { 123L, 01000L, Ox3fL } \\ & \text { 1234567891011L } \end{aligned}$

nerals are just negated (positive) literals.
ns that there are 2^{N} integers in the domain of the type:
range of values is -2^{N-1}.. $2^{N-1}-1$.
ed, only non-negative numbers, and range is $0 . .2^{N}-1$.
p:44:05 2017
cs61B: Lecture \#14 2

CS61B Lecture \#14: Integers

Modular Arithmetic: Examples

8) yields 0 , since $512-0=2 \times 2^{8}$.
9) and (byte) $(127+1)$ yield -128 , since $128-(-128)=$
*99) yields 15 , since $9999-15=39 \times \cdot 2^{8}$.
*13) yields 122 , since $-390-122=-2 \times 2^{8}$.
yields $2^{16}-1$, since $-1-\left(2^{16}-1\right)=-1 \times 2^{16}$.

:44:05 2017

CS618: Lecture \#14 4

Modular Arithmetic

w do we handle overflow, such as occurs in $10000 * 10000 * 10000$? ges throw an exception (Ada), some give undefined re)
; the result of any arithmetic operation or conversion pes to "wrap around"-modular arithmetic.
"next number" after the largest in an integer type is (like "clock arithmetic").

128 == (byte) ($127+1$) == (byte) -128
sult of some arithmetic subexpression is supposed to T, an n-bit integer type,
ompute the real (mathematical) value, x,
a number, x^{\prime}, that is in the range of T, and that is to x modulo 2^{n}.
ans that $x-x^{\prime}$ is a multiple of 2^{n}.)

Negative numbers

resentation for -1?

$$
\left.\begin{array}{r|r}
1 & 00000001_{2} \\
+\quad-1 & 11111111_{2} \\
= & 0
\end{array} \right\rvert\, \begin{array}{r|}
\hline 00000000_{2}
\end{array}
$$

n a byte, so bit 8 falls off, leaving 0.
ed bit is in the 2^{8} place, so throwing it away gives an modulo 2^{8}. All bits to the left of it are also divisible
types (char), arithmetic is the same, but we choose to ly non-negative numbers modulo 2^{16}.

$$
\begin{array}{r|r}
1 & 0000000000000001_{2} \\
+2^{16}-1 & 1111111111111111_{2} \\
=2^{16}+0 & 1 \mid 0000000000000000_{2}
\end{array}
$$

:44:05 2017
C561B: Lecture \#14 6

Modular Arithmetic and Bits

ound?
tion is the natural one for a machine that uses binary
consider bytes (8 bits):

Decimal	Binary
101	1100101
$\times 99$	1100011
9999	$100111 \mid 00001111$
-9984	$100111 \mid 00000000$
15	00001111

it n, counting from 0 at the right, corresponds to 2^{n}. he left of the vertical bars therefore represent multi256.
them away is the same as arithmetic modulo 256
:44:05 2017

Promotion

perations (+, *, ...) promote operands as needed.
just implicit conversion.
pperations,

```
rand is long, promote both to long.
promote both to int.
\beta== (int) aByte + 3 // Type int
\beta== aLong + (long) 3 // Type long
= (int) 'A' + 2 // Type int
Byte + 1 // ILLEGAL (why?)
ely,
1; // Defined as aByte = (byte) (aByte+1)
mple:
& aChar is an upper-case letter
prCaseChar = (char) ('a' + aChar - 'A'); // why cast?
5:44:052017
cS618: Lecture #14 8
```


Conversion

ava will silently convert from one type to another if this and no information is lost from value.
ast explicitly, as in (byte) x.
e; char aChar; short aShort; int anInt; long aLong;
aByte; anInt = aByte; anInt = aShort;
Char; aLong = anInt;
;, might lose information.
Long; aByte = anInt; aChar = anInt; aShort = anInt;
aChar; aChar = aShort; aChar = aByte;
special dispensation:
3; // 13 is compile-time constant
2+100// 112 is compile-time constant

Bit twiddling

C++) allow for handling integer types as sequences of iversion to bits" needed: they already are.
Ind their uses:

| Set | Flip | Flip all |
| ---: | ---: | ---: | :--- |
| 00101100 | 00101100 | |
| 10100111 | -10100111 | ~ 10100111 |
| 10101111 | 10001011 | 01011000 |

Bit twiddling

C++) allow for handling integer types as sequences of iversion to bits" needed: they already are.

ind their uses:

Set	Flip	Flip all	
00101100	00101100		
10100111	\sim	10100111	~ 10100111
10101111	10001011	01011000	

	Arithmetic Right	Logical Right
$1 \ll 3$	10101101 >> 3	10101100 >>> 3
	11110101	00010101
1) >>> 29?		
<< n ?		
>> n ?		
>>> 3)	\& ($(1 \ll 5)-1) ?$	

Bit twiddling

C++) allow for handling integer types as sequences of iversion to bits" needed: they already are.

Set	Flip	Flip all
00101100	00101100	
\| 10100111	10100111	10100111
10101111	10001011	01011000

	Arithmetic Right	Logical Right
$1 \ll 3$	10101101 >> 3	10101100 >>> 3
0	11110101	00010101
1) >>> 29?		
<< n ?		
> $>n ?$>>		」 (i.e., rounded down).
	\& $((1 \ll 5)-1) ?$	

:44:05 2017
CS618: Lecture \#14 12

Bit twiddling

C++) allow for handling integer types as sequences of version to bits" needed: they already are

ind their uses:

| Set | Flip | Flip all |
| ---: | :---: | :---: | :---: |
| 00101100 | 00101100 | |
| 10100111 | -10100111 | ~ 10100111 |
| 10101111 | 10001011 | 01011000 |

	Arithmetic Right	Logical Right
$1 \ll 3$	10101101 >>	10101100 >>> 3
0	11110101	00010101
1) >>> 29? $=$		$=7$.
<< n ?		$=x \cdot 2^{n}$.
>> n ?		
>>> 3)	\& $((1 \ll 5)-1) ?$	

Bit twiddling

C++) allow for handling integer types as sequences of iversion to bits" needed: they already are.

ind their uses:		
Set	Flip	Flip all
00101100	00101100	
\| 10100111	- 10100111	10100111
10101111	10001011	01011000
Arithmetic Right		Logical Right
$1 \ll 3 \quad 10$	101101 >> 3	310101100 >>> 3
	110101	00010101
1) >>> 29? =		7.
<< n ?		$x \cdot 2^{n}$.
>> n ? $=$		$\left\lfloor x / 2^{n}\right\rfloor$ (i.e., rounded
>>> 3) \& ((1<<5)-1)? 5-	-bit integer, bits 3-7 of

