
CS61B Lecture #14: Integers
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Integer Types and Literals

Bits Signed? Literals
Yes Cast from int: (byte) 3
Yes None. Cast from int: (short) 4096

No

’a’ // (char) 97

’\n’ // newline ((char) 10)

’\t’ // tab ((char) 8)

’\\’ // backslash

’A’, ’\101’, ’\u0041’ // == (char) 65

Yes
123

0100 // Octal for 64

0x3f, 0xffffffff // Hexadecimal 63, -1 (!)

64 Yes
123L, 01000L, 0x3fL

1234567891011L

numerals are just negated (positive) literals.

means that there are 2N integers in the domain of the type:

signed, range of values is −2N−1 .. 2N−1 − 1.

unsigned, only non-negative numbers, and range is 0..2N − 1.
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Modular Arithmetic

How do we handle overflow, such as occurs in 10000*10000*10000?

languages throw an exception (Ada), some give undefined re-
C++)

defines the result of any arithmetic operation or conversion
types to “wrap around”—modular arithmetic.

“next number” after the largest in an integer type is
(like “clock arithmetic”).

128 == (byte) (127+1) == (byte) -128

result of some arithmetic subexpression is supposed to
T , an n-bit integer type,

compute the real (mathematical) value, x,

a number, x′, that is in the range of T , and that is
equivalent to x modulo 2n.

means that x− x′ is a multiple of 2n.)
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Modular Arithmetic: Examples

(64*8) yields 0, since 512− 0 = 2× 28.

(64*2) and (byte) (127+1) yield -128, since 128− (−128) =

(101*99) yields 15, since 9999− 15 = 39× ·28.

(-30*13) yields 122, since −390− 122 = −2× 28.

yields 216 − 1, since −1− (216 − 1) = −1× 216.
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Modular Arithmetic and Bits

around?

definition is the natural one for a machine that uses binary

example, consider bytes (8 bits):

Decimal Binary

101 1100101

×99 1100011

9999 100111|00001111

− 9984 100111|00000000

15 00001111

bit n, counting from 0 at the right, corresponds to 2n.

the left of the vertical bars therefore represent multi-
256.

them away is the same as arithmetic modulo 256.
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Negative numbers

representation for -1?

1 000000012
+ −1 111111112
= 0 1|000000002

in a byte, so bit 8 falls off, leaving 0.

truncated bit is in the 28 place, so throwing it away gives an
number modulo 28. All bits to the left of it are also divisible

types (char), arithmetic is the same, but we choose to
only non-negative numbers modulo 216:

1 00000000000000012
+ 216 − 1 11111111111111112
= 216 + 0 1|00000000000000002
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Conversion

Java will silently convert from one type to another if this
and no information is lost from value.

cast explicitly, as in (byte) x.

aByte; char aChar; short aShort; int anInt; long aLong;

aByte; anInt = aByte; anInt = aShort;

aChar; aLong = anInt;

OK, might lose information:

aLong; aByte = anInt; aChar = anInt; aShort = anInt;

aChar; aChar = aShort; aChar = aByte;

special dispensation:

13; // 13 is compile-time constant

12+100 // 112 is compile-time constant
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Promotion

operations (+, *, . . . ) promote operands as needed.

just implicit conversion.

operations,

operand is long, promote both to long.

otherwise promote both to int.

3 == (int) aByte + 3 // Type int

3 == aLong + (long) 3 // Type long

== (int) ’A’ + 2 // Type int

aByte + 1 // ILLEGAL (why?)

fortunately,

1; // Defined as aByte = (byte) (aByte+1)

example:

Assume aChar is an upper-case letter

lowerCaseChar = (char) (’a’ + aChar - ’A’); // why cast?
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Bit twiddling

C++) allow for handling integer types as sequences of
“conversion to bits” needed: they already are.

and their uses:

Set Flip Flip all
00101100 00101100

| 10100111 ^ 10100111 ~ 10100111

10101111 10001011 01011000

Arithmetic Right Logical Right
10101101 << 3 10101101 >> 3 10101100 >>> 3

01101000 11110101 00010101

(-1) >>> 29?
<< n?
>> n?
>>> 3) & ((1<<5)-1)?
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Set Flip Flip all
00101100 00101100

| 10100111 ^ 10100111 ~ 10100111

10101111 10001011 01011000

Arithmetic Right Logical Right
10101101 << 3 10101101 >> 3 10101100 >>> 3

01101000 11110101 00010101
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Bit twiddling

C++) allow for handling integer types as sequences of
“conversion to bits” needed: they already are.

and their uses:

Set Flip Flip all
00101100 00101100

| 10100111 ^ 10100111 ~ 10100111

10101111 10001011 01011000

Arithmetic Right Logical Right
10101101 << 3 10101101 >> 3 10101100 >>> 3

01101000 11110101 00010101

(-1) >>> 29? = 7.
<< n? = x · 2n.
>> n?
>>> 3) & ((1<<5)-1)?
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Bit twiddling

C++) allow for handling integer types as sequences of
“conversion to bits” needed: they already are.

and their uses:

Set Flip Flip all
00101100 00101100

| 10100111 ^ 10100111 ~ 10100111

10101111 10001011 01011000

Arithmetic Right Logical Right
10101101 << 3 10101101 >> 3 10101100 >>> 3

01101000 11110101 00010101

(-1) >>> 29? = 7.
<< n? = x · 2n.
>> n? = ⌊x/2n⌋ (i.e., rounded down).
>>> 3) & ((1<<5)-1)?
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Bit twiddling

C++) allow for handling integer types as sequences of
“conversion to bits” needed: they already are.

and their uses:

Set Flip Flip all
00101100 00101100

| 10100111 ^ 10100111 ~ 10100111

10101111 10001011 01011000

Arithmetic Right Logical Right
10101101 << 3 10101101 >> 3 10101100 >>> 3

01101000 11110101 00010101

(-1) >>> 29? = 7.
<< n? = x · 2n.
>> n? = ⌊x/2n⌋ (i.e., rounded down).
>>> 3) & ((1<<5)-1)? 5-bit integer, bits 3–7 of x.
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