Integer Types and Literals

:44:05 2017

Signed? Literals
Yes Cast from int: (byte) 3
Yes None. Cast from int: (short) 4096
’a’ // (char) 97
’\n’ // newline ((char) 10)
No ’\t’ // tab ((char) 8)
’\\" // backslash
’A’, °\101’, ’\u0041’ // == (char) 65
123
Yes 0100 // Octal for 64
0x3f, Oxffffffff // Hexadecimal 63, -1 (!)
y 123L, 01000L, Ox3fL
es 1234567891011L

nerals are just negated (positive) literals.

ns that there are 2V integers in the domain of the type:
range of values is —2V~1 . 2V-1 1,

td, only non-negative numbers, and range is 0.2 — 1.

CS61B: Lecture #14 2

Modular Arithmetic: Examples
18) yields 0, since 512 — 0 = 2 x 25,

2) and (byte) (127+1) yield -128, since 128 — (—128) =

*99) yields 15, since 9999 — 15 = 39 x -25,
1%13) yields 122, since —390 — 122 = —2 x 25,
yields 2! — 1, since —1 — (210 — 1) = —1 x 216,

5:44:05 2017 CS61B: Lecture #14 4

Negative numbers

»resentation for -1?

1| 00000001
+ —1] 11111111,
= 0/1]000000004

na byte, so bit 8 falls off, leaving O.

ed bit is in the 2° place, so throwing it away gives an
r modulo 2°. All bits to the left of it are also divisible

types (char), arithmetic is the same, but we choose to
ily non-negative numbers modulo 2'¢:

1| 00000000000000014
+ 216 — 1] 1111111111111,
= 2164 0| 1]0000000000000000;

5:44:05 2017 CS61B: Lecture #14 6

:44:05 2017

CS61B Lecture #14: Integers

CS61B: Lecture #14 1

Modular Arithmetic

w do we handle overflow, such as occurs in 10000%10000%10000?

ges throw an exception (Ada), some give undefined re-
)

5 the result of any arithmetic operation or conversion
'pes to “wrap around"—modular arithmetic.

“next number” after the largest in an integer type is
(like “clock arithmetic").

128 == (byte) (127+1) == (byte) -128

sult of some arithmetic subexpression is supposed to
T, an n-bit integer type,
ompute the real (mathematical) value, z,

a number, 2/, that is in the range of 7', and that is
*to x modulo 2".

ins that z — 2’ is a multiple of 2".)

5:44:05 2017 CS61B: Lecture #14 3

Modular Arithmetic and Bits

'ound?

ition is the natural one for a machine that uses binary

, consider bytes (8 bits):

Decimal Binary
101 1100101
x99 1100011
9999 100111/00001111
— 9984 100111/00000000
15 00001111

it n, counting from O at the right, corresponds to 2.

‘he left of the vertical bars therefore represent multi-
256.

them away is the same as arithmetic modulo 256.

5:44:05 2017 CS61B: Lecture #14 5




Promotion

perations (+,*,...) promote operands as needed.
just implicit conversion.
perations,

rand is long, promote both to long.
promote both to int.

== (int) aByte + 3 // Type int
== along + (long) 3 // Type long

Bit twiddling

C++) allow for handling integer types as sequences of
wersion to bits" needed: they already are.

ind their uses:

Set | Flip Flip all
00101100 00101100
| 10100111 |~ 10100111 |~ 10100111

| 10101111] 10001011] 01011000

| Arithmetic Right |  Logical Right

Bit twiddling

C++) allow for handling integer types as sequences of
wersion to bits" needed: they already are.

ind their uses:

Set | Flip Flip all
00101100 00101100
| 10100111 |~ 10100111 |~ 10100111

| 10101111] 10001011] 01011000

Arithmetic Right |  Logical Right

ava will silently convert from one type to another if this
and no information is lost from value.

ast explicitly, as in (byte) x.

e; char aChar; short aShort; int anInt; long alLong;
aByte; anInt = aByte; anlnt = aShort;

Char; along = anlInt;

, might lose information:

Long; aByte = anInt; aChar = anInt; aShort = anlInt;
aChar; aChar = aShort; aChar = aByte;

special dispensation:
3; // 13 is compile-time constant
2+100 // 112 is compile-time constant

:44:05 2017 CS61B: Lecture #14 7

Bit twiddling

C++) allow for handling integer types as sequences of
\version to bits" needed: they already are.

ind their uses:
Set Flip Flip all
00101100| 00101100
| 10100111~ 10100111|~ 10100111
| 10101111| 10001011| 01011000

| Arithmetic Right |  Logical Right

1< 3 10101101 >> 3 10101100 >>> 3
0 11110101 00010101

1) >>> 29?

<< n?

>> n?

>>> 3) & ((1<<5)-1)7

5:44:05 2017 CS61B: Lecture #14 9

= (int) A’ + 2 // Type int 1< 3 10101101 >> 3 10101100 >>> 3 1< 3 10101101 >> 3 10101100 >>> 3
Byte + 1 // ILLEGAL (why?) 0 11110101 00010101 0 11110101 00010101
ely, 1) >>> 29? =T. 1) >>> 29? =T.
1 Defined as aB b Byte+1 [ m? fe n? 2
. = + .
’ // Defined as aByte = (byte) (aByte+l) >> n? >> n? = |z/2"] (i.e., rounded down).
mple: >>> 3) & ((1<<5)-1)7 >>> 3) & ((1<<5)-1)7
aChar is an upper-case letter
rCaseChar = (char) (’a’ + aChar - ’A’); // why cast?
:44:05 2017 CS61B: Lecture #14 8 5:44:05 2017 CS61B: Lecture #14 10 5:44:05 2017 CS61B: Lecture #14 12
Conversion

Bit twiddling

C++) allow for handling integer types as sequences of
\version to bits" needed: they already are.

ind their uses:
Set Flip Flip all
00101100| 00101100
| 10100111~ 10100111|~ 10100111
| 10101111| 10001011| 01011000

| Arithmetic Right |  Logical Right
1 << 3‘ 10101101 >> 3 10101100 >>> 3

0 11110101 00010101
1) >>> 29? =T

<< n? =x-2"

>> n?

>>> 3) & ((1<<5)-1)7

5:44:05 2017 CS61B: Lecture #14 11




Bit twiddling

C++) allow for handling integer types as sequences of
version to bits" needed: they already are.

nd their uses:
Set | Flip Flip all
00101100 | 00101100‘
| 10100111~ 10100111|~ 10100111
10101111| 10001011| 01011000

Arithmetic Right |  Logical Right

L << 3 10101101 >> 3 10101100 >>> 3

p 11110101 00010101

L) >>> 29? =T

< n? =x-2"

> n? = |z/2"] (i.e., rounded down).

>>> 3) & ((1<<5)-1)7|5-bit integer, bits 3-7 of x.

:44:05 2017 CS61B: Lecture #14 13




	CS61B Lecture #14: Integers
	Integer Types and Literals
	Modular Arithmetic
	Modular Arithmetic: Examples
	Modular Arithmetic and Bits
	Negative numbers
	Conversion
	Promotion
	Bit twiddling

