Topics

standard Java Collections classes.

, ListIterators
5 and maps in the abstract

nalysis of implementing lists with arrays.

0:29 2018

CS61B: Lecture #17 2

Pollection Structures in java.util

=5 e

x4

‘\

2dList ‘ ‘ ArraylList ‘ ‘ Vector ‘ }HashSet‘ ‘TreeSeT‘

class

— : extends

:akHashMap‘ ‘TreeMap‘ 77777 - i implements

10:29 2018 CS61B: Lecture #17 4

about Library Design: Optional Operations

actions heed to be modifiable; often makes sense just
i from them.

~ations are optional (add, addAll, clear, remove, removeAll,

developers decided to have all Collections implement
lowed implementations to throw an exception:

UnsupportedOperationException

se design would have created separate interfaces:

lection { contains, containsAll, size, iterator, ... }
andable extends Collection { add, addAll }

inkable extends Collection { remove, removeAll, ... }
ifiableCollection

llection, Expandable, Shrinkable { }

ave lots of interfaces. Perhaps that's why they didn't
y.

10:29 2018 CS61B: Lecture #17 6

CS61B Lecture #17

0:29 2018

CS61B: Lecture #17 1

Data Types in the Abstract

time, should not worry about implementation of data
search, etc.

o for us—their specification—is important.

eral standard types (in java.util) fo represent collec-

icts

‘aces:

tion: General collections of items.

ndexed sequences with duplication

rtedSet: Collections without duplication

rtedMap: Dictionaries (key — value)

classes that provide actual instances: LinkedList, ArrayList,
[reeSet.

‘hange easier, purists would use the concrete types only
nterfaces for parameter types, local variables.

10:29 2018 CS61B: Lecture #17 3

The Collection Interface

ferface. Main functions promised:
nip tests: contains (€), containsAll (C)
:ries: size, isEmpty

iterator, toArray

modifiers: add, addAll, clear, remove, removeAll (set
e), retainAll (intersect)

10:29 2018 CS61B: Lecture #17 5

mplementing Lists (I): ArrayLists
ncrete types in Java library for interface List are
nd LinkedList:

t expect, an ArrayList, A, uses an array to hold data.
a list containing the three items 1, 4, and 9 might be
like this:

data: [(149 [T]
count:

j four more items to A, its data array will be full, and
data will have to be replaced with a pointer o a new,
that starts with a copy of its previous values.

r best performance, how big should this new array be?

se the size by 1 each time it gets full (or by any con-
the cost of N additions will scale as ©(N?), which
List look much worse than LinkedList (which uses an
implementation.)

0:29 2018 CS61B: Lecture #17 8

ortization: Expanding Vectors (II)

Resizing |Cumulative | Resizing Cost| Array Size
Cost Cost per Item |After Insertions
0 0 0 1
2 2 1 2
4 6 2 4
0 6 15 4
8 14 2.8 8
0 14 2.33 8
0 14 175 8
16 30 3.33 16
0 30 1.88 16
-1 0 2m+é -9 z‘ 2 27:;+1
2m+2 2777+3 -9 ~ 4 2m+2

d out (amortize) the cost of resizing, we average at
} fime units on each item: “amortized insertion time is 4
to add N elements is ©(N), not O(N?).

10:29 2018 CS61B: Lecture #17 10

Application to Expanding Arrays

j to our array, the cost, ¢;, of adding element #i when
‘eady has space for it is 1 unit.

)es not initially have space when adding items 1, 2, 4, 8,
ner words at item 2" for all n > 0. So,
> 0 and is not a power of 2; and

1 when i is a power of 2 (copy i items, clear another i
1 then add item #:).

yperation #2" we're going to need to have saved up at
"+ units of potential to cover the expense of expanding
nd we have this operation and the preceding 2"~ — 1
1 which to save up this much potential (everything since
\g doubling operation).

(=land a; =5 fori > 0. Apply @11 = ; + (a; — ¢;), and

happens:

4|5|6| 7| 8[9]10]11]12[13] 14| 15] 16|17 Pretending each cost is
91111711111113315 d)
555/ 5/ 5(5 5 555 5/ 5/ 5 5 never un ‘eresﬁmafes
65/2|6/10/14|2| 6|10|14 |18 |22 26|30 2 true cumulative time.
10:29 2018 CS61B: Lecture #17 12

The List Interface

lection

represent indexed sequences (generalized arrays)
thods to those of Collection:

nip tests: index0f, lastIndexOf.

get (i), listIterator(), sublist (B, E).

. add and addAll with additional index to say where to
wise for removal operations. set operation to go with

erator<Item> extends Iterator<Item>:

yious and hasPrevious.

ve, and set allow one to iterate through a list, inserting,
or changing as you go.

I Question: What advantage is there to saying List L
an LinkedList L or ArrayList L?

0:29 2018 CS61B: Lecture #17 7

Amortization: Expanding Vectors

array for expanding sequence, best to double the size
jrow it. Here's why.

ze s, doubling its size and moving s elements to the new
time proportional to 2s.

there is an additional ©(1) cost for each addtion to
actually assighing the new value into the array.

Id up these costs for inserting a sequence of N items,
st turns out to proportional to N, as if each addition
it time, even though some of the additions actually take
ional to NV all by themselves!

10:29 2018 CS61B: Lecture #17 9

\ating Amortized Time: Potential Method

: the argument, associate a potential, ®; > 0, to the ith
at keeps track of “saved up” time from cheap operations
‘spend” on later expensive ones. Start with ©, = 0.

end that the cost of the ifh operation is actually a;, the
)st, defined

a; = ¢+ D — by
ne real cost of the operation. Or, looking at potential:
i1 =P+ (a; —)
erations, we artificially set a; > ¢; so that we can in-
1> D).

2 ones, we typically have a; < ¢; and greatly decrease ¢
I it go negative—may not be “overdrawn”).

) all this so that a; remains as we desired (e.g., O(1) for
ray), without allowing ®; < 0.

t we choose a; so that ®; always stays ahead of c;.

10:29 2018 CS61B: Lecture #17 11

	CS61B Lecture #17
	Topics
	Data Types in the Abstract
	Collection Structures in java.util
	The Collection Interface
	Side Trip about Library Design: Optional Operations
	The List Interface
	Implementing Lists (I): ArrayLists
	Amortization: Expanding Vectors
	Amortization: Expanding Vectors (II)
	Demonstrating Amortized Time: Potential Method
	Application to Expanding Arrays

