Topics

standard Java Collections classes.

, ListIterators
s and maps in the abstract
nalysis of implementing lists with arrays.

0:29 2018 CS61B: Lecture #17 2

CS61B Lecture #17

Data Types in the Abstract

time, should *not* worry about implementation of data search, etc.

o for us—their specification—is important.

eral standard types (in java.util) to represent collec-

aces:

tion: General collections of items.
ndexed sequences with duplication
rtedSet: Collections without duplication
rtedMap: Dictionaries (key \mapsto value)

classes that provide actual instances: LinkedList, ArrayList,

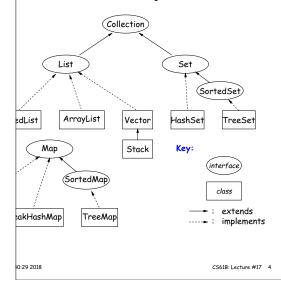
CS61B: Lecture #17 3

TreeSet.

0:29 2018

hange easier, purists would use the concrete types only nterfaces for parameter types, local variables.

Collection Structures in java.util



about Library Design: Optional Operations

ections need to be modifiable; often makes sense just from them.

rations are optional (add, addAll, clear, remove, removeAll,

developers decided to have *all* Collections implement lowed implementations to throw an exception:

UnsupportedOperationException

ve design would have created separate interfaces:

```
lection { contains, containsAll, size, iterator, ... }
andable extends Collection { add, addAll }
inkable extends Collection { remove, removeAll, ... }
ifiableCollection
llection, Expandable, Shrinkable { }
```

ave lots of interfaces. Perhaps that's why they didn't v.

0:29 2018 CS61B: Lecture #17 6

The Collection Interface

terface. Main functions promised:

e), retainAll (intersect)

```
nip tests: contains (∈), containsAll (⊆)
ries: size, isEmpty
iterator, toArray
modifiers: add, addAll, clear, remove, removeAll (set
```

0:29 2018 CS61B: Lecture #17 5

0:29 2018 CS61B: Lecture #17 1

mplementing Lists (I): ArrayLists

ncrete types in Java library for interface List are nd LinkedList:

t expect, an ArrayList, A, uses an array to hold data., a list containing the three items 1, 4, and 9 might be like this:

data: 📑	1 4 9
count: 3	

g four more items to A, its data array will be full, and data will have to be replaced with a pointer to a new, that starts with a copy of its previous values.

r best performance, how big should this new array be? se the size by 1 each time it gets full (or by any conthe cost of N additions will scale as $\Theta(N^2)$, which List look much worse than LinkedList (which uses an

0:29 2018 CS61B: Lecture #17 8

The List Interface

lection

implementation.)

represent indexed sequences (generalized arrays)

thods to those of Collection:

hip tests: indexOf, lastIndexOf.

get(i), listIterator(), sublist(B, E).

add and addAll with additional index to say where to wise for removal operations. set operation to go with

erator<Item> extends Iterator<Item>:

vious and hasPrevious.

ve, and set allow one to iterate through a list, inserting, or changing as you go.

Question: What advantage is there to saying List L on LinkedList L or ArrayList L?

0:29 2018 CS61B: Lecture #17 7

ortization: Expanding Vectors (II)

	Resizing Cost	Cumulative Cost		Array Size After Insertions		
	0	0	0	1		
	2	2	1	2		
	4	6	2	4		
	0	6	1.5	4		
	8	14	2.8	8		
	0	14	2.33	8		
	:	:	:	:		
	0	14	1.75	8		
	16	30	3.33	16		
	:	÷	:	:		
	0	30	1.88	16		
	:	ŧ	:	:		
- 1	0	$2^{m+2}-2$	≈ 2	2^{m+1}		
	2^{m+2}	$2^{m+3}-2$	≈ 4	2^{m+2}		

d out (amortize) the cost of resizing, we average at time units on each item: "amortized insertion time is 4 to add N elements is $\Theta(N)$, not $\Theta(N^2)$.

0:29 2018 CS61B: Lecture #17 10

Amortization: Expanding Vectors

array for expanding sequence, best to *double* the size row it. Here's why.

ze s, doubling its size and moving s elements to the new time proportional to 2s.

there is an additional $\Theta(1)$ cost for each addition to actually assigning the new value into the array.

ld up these costs for inserting a sequence of N items, st turns out to proportional to N, as if each addition t time, even though some of the additions actually take ional to N all by themselves!

0:29 2018 CS61B: Lecture #17 9

Application to Expanding Arrays

) to our array, the cost, c_i , of adding element #i when eady has space for it is 1 unit.

bes not initially have space when adding items 1, 2, 4, 8, her words at item 2^n for all n > 0. So,

> 0 and is not a power of 2; and

1 when i is a power of 2 (copy i items, clear another i then add item #i).

pperation # 2^n we're going to need to have saved up at 2^{n+1} units of potential to cover the expense of expanding nd we have this operation and the preceding $2^{n-1}-1$ which to save up this much potential (everything since g doubling operation).

= 1 and $a_i=5$ for i>0. Apply $\Phi_{i+1}=\Phi_i+(a_i-c_i)$, and happens:

4	5 1	6	7	8 17	9	10 1	11 1	12 1	13 1	14 1	15 1	16 33 5 30	17 1	Pretending each cost is
Ь	5	5	5	5	5	5	5	5	5	5	5	5	5	5 never underestimates
ķ	2	6	10	14	2	6	10	14	18	22	26	30	2	true cumulative time.

0:29 2018 CS61B: Lecture #17 12

ating Amortized Time: Potential Method

the argument, associate a potential, $\Phi_i \geq 0$, to the i^{th} at keeps track of "saved up" time from cheap operations spend" on later expensive ones. Start with $\Phi_0 = 0$.

end that the cost of the i^{th} operation is actually a_i , the st. defined

$$a_i = c_i + \Phi_{i+1} - \Phi_i,$$

he real cost of the operation. Or, looking at potential:

$$\Phi_{i+1} = \Phi_i + (a_i - c_i)$$

erations, we artificially set $a_i > c_i$ so that we can in-

e ones, we typically have $a_i \ll c_i$ and greatly decrease Φ tit go negative—may not be "overdrawn").

all this so that a_i remains as we desired (e.g., O(1) for ray), without allowing $\Phi_i < 0$.

It we choose a_i so that Φ_i always stays ahead of c_i .

0:29 2018 CS61B: Lecture #17 11