ublic-Service Announcements II

insulting is recruiting for the Fall 2018 Semester! 21 years, our group has been solving pressing busins for clients across a variety of industries. We 11 majors and backgrounds and have developed an ext cultivates not only our membersầ ${ }^{\text {Th }}$ skillsets but a stic understanding of problem-solving that they carry to whatever industry they pursue.
ple, $B C$ was hired to completely automate terminal on Heathrow Airport and created a framework to senger capacity from 35M to 75 M within 10 years. ew back and forth from London for research and to ings.
interested in applying, check out our recruitment e (bc.berkeley.edu/bc-join.html). Feel free to come r two infosessions on August 28 and August 30 and on Sproul. Applications are due at $11: 59 \mathrm{pm}$ on Fri31. If you have any questions, refer to our website edu) or email our Internal Vice President Jessica Ji פberkeley.edu)."
:15:262018
C561B: Lecture \#2 2

Public-Service Announcements I

a software development club on campus that aims to ap between academic and practical technical knowlintor passionate, driven individuals and connect them fful industry initiatives. Each semester, our Client with industry partners to build products ranging ck web development to machine learning. Meanwhile, d Team focuses on learning the essentials of softoment and simultaneously develops an internal tool z or a non-profit organization.
roking to recruit new members this semester! Appliill information can be found at our website: base.berkeley.edu/"

?: Let's Write a Program: Prime Numbers

java Primes U to print prime numbers through U.
a Primes 101
$\begin{array}{lllllllll}3 & 5 & 7 & 11 & 13 & 17 & 19 & 23 & 29\end{array}$
$37414347535961 \quad 6771$
79838997101
prime number is an integer greater than 1 that has no than itself other than 1.
$N / k \geq \sqrt{N}$, for $N, k>0$.
N then N / k divides N.
-ential divisors up to and including the square root.

15:26 2018
CS618: Lecture \#2 4

Administrivia

sure you have obtained a Unix account. If you are a inrollment student not yet on our lists, please tell a TA in have you added to those eligible to receive an account.
t complete Lab \#1, please try to do so over the weekend 1 are due Friday midnight). It is especially important to :entral reppository.
e not to take this course after all, please tell CalCentral at we can adjust the waiting list accordingly.
up; due next Friday at midnight. You get credit for any put we suggest you give the problems a serious try.

Testing for Primes

```
boolean isPrime(int x) {
se;
Divisible(x, 2); // "!" means "not"
is divisible by any positive number >=K and < X,
1. */
boolean isDivisible(int x, int k) {
    // a "guard"
se;
k == 0) // "%" means "remainder"
1e;
k < x && x % k != 0)
ivisible(x, k+1);
15:26 2018
    CS61B: Lecture #2 6
```


Plan

rimes \{
1 primes up to ARGS[0] (interpreted as an
, 10 to a line. */
c void main(String[] args) \{
s(Integer.parseInt (args[0]));
. 1 primes up to and including LIMIT, 10 to */
:ic void printPrimes(int limit) \{
ery integer, x, between 2 and LIMIT, print it if
e(x), 10 to a line. \}*/

X is prime */
ic boolean isPrime(int x) \{
X is prime)*/;

Iteration

is tail recursive, and so creates an iterative process.
Algol family" production languages have special syntax . Four equivalent versions of isDivisible:

$$
\mathrm{k}==
$$

$$
\begin{aligned}
& \text { while }(\mathrm{k}<\mathrm{x}) \text {) }\{/ / \text { ! } \mathrm{k}\rangle=\mathrm{x}) \\
& \text { if }(\mathrm{x} \% \mathrm{k}==0)
\end{aligned}
$$

Thinking Recursively

check isDivisible $(13,2)$ by tracing one level.

| s divisible by |
| :--- | :--- |
| $\mathrm{p}=\mathrm{K}$ and $<\mathrm{x}$, |$|$| - Call assigns $\mathrm{x}=13, \mathrm{k}=2$ |
| :--- |
| - Body has form 'if $(\mathrm{k}>=\mathrm{x}) ~ S$ | else $S_{2}{ }^{\prime}$

- Since $2<13$, we evaluate the first else.
- Check if $13 \bmod 2=0$; it's not
- Left with isDivisible $(13,3)$.
- Rather than tracing it, instead use the comment:
- Since 13 is not divisible by any integer in the range $3 . .12$ (and $3>1$), isDivisible $(13,3)$ must be false, and we're done
- Sounds like that last step begs the question. Why doesn't it?
nal Task: printPrimes (Simplified)
primes up to and including LIMIT. */
void printPrimes(int limit) \{
:15:26 2018
CS618: Lecture \#2 10

Using Facts about Primes

used the Useful Facts from an earlier slide. Only have divisors up to the square root.
lent the iterative version of isDivisible:
f X is divisible by some number $>=K$ and $<X$,
hat $K>1$, and that X is not divisible by ber >1 and <K. */
tic boolean isDivisible(int x, int k) \{
= (int) Math.round(Math.sqrt(x));
$\mathrm{k} 1=\mathrm{k}$; $\mathrm{k} 1<=$ limit; k 1 += 1) \{
, k1 == 0)
n true;
1se;
litional (blue) condition in the comment?

printPrimes (full version)

```
primes up to and including LIMIT, 10 to
```

```
void printPrimes(int limit) {
= 2; p <= limit; p += 1) {
Prime(p)) {
stem.out.print(p + " ");
+= 1;
    (np % 10 == 0)
    System.out.println();
```

LO ! = 0)
..out.println();
15:26 2018
CS618: Lecture \#2 12

Simplified printPrimes Solution

primes up to and including LIMIT. */
void printPrimes(int limit) \{
= 2; p <= limit; $\mathrm{p}+=1$) \{
Prime(p)) \{
stem.out.print(p + " ");
.println();

