
CS61B Lecture #23

queues (Data Structures §6.4, §6.5)

queries (§6.2)

utilities: SortedSet, Map, etc.

Hashing (Data Structures Chapter 7).

14:17:56 2018 CS61B: Lecture #23 1

Priority Queues, Heaps

queue: defined by operations “add,” “find largest,” “remove

scheduling long streams of actions to occur at various
times.

for sorting (keep removing largest).

implementation is the heap, a kind of tree.

(Confusingly, this same term is used to described the pool of storage
new operator uses. Sorry about that.)

14:17:56 2018 CS61B: Lecture #23 2

Heaps

is a binary tree that enforces the

Property: Labels of both children of each node are less
node’s label.

top has largest label.

binary search property, which allows us to keep tree

always valid to put the smallest nodes anywhere at the
the tree.

can be made nearly complete: all but possibly the last
many keys as possible.

insertion of new value and deletion of largest value al-
time proportional to lgN in worst case.

is basically the same, but with the minimum value at the
children having larger values than their parents.

14:17:56 2018 CS61B: Lecture #23 3

Example: Inserting into a simple heap

-1 20

20

17

5 4

9

0 -1

boxes show where heap property violated

20

9

0 -1

20

17

8

1 5

4

9

0 -1

re-heapify up

14:17:56 2018 CS61B: Lecture #23 4

Heap insertion continued

20

4

9

0 -1

20

17

8

1 5

18

4

9

0 -1

20

18

8

1 5

17

4

9

0 -1

14:17:56 2018 CS61B: Lecture #23 5

Removing Largest from Heap

largest: Move bottommost, rightmost node to top, then
down as needed (swap offending node with larger child) to
heap property.

20

17

9

0 -1

4

18

8

1 5

17

9

0 -1

18

4

8

1 5

17

9

0 -1

18

9

0 -1

Final
Initial ↓

14:17:56 2018 CS61B: Lecture #23 6



Heaps in Arrays

are nearly complete (missing items only at bottom level),
arrays for compact representation.

removal from last slide (dashed arrows show children):

20

17

4

9

0 -1

=⇒

stored in level order.
node at index #K are in
+ 1 if numbering from 1,
and 2K + 2 if from 0.

20 18 9 8 17 0 -1 1 5 4

⇓

4 18 9 8 17 0 -1 1 5

⇓

18 4 9 8 17 0 -1 1 5

⇓

18 17 9 8 4 0 -1 1 5

1 2 3 4 5 6 7 8 9 10

14:17:56 2018 CS61B: Lecture #23 7

Ranges

looked for specific items

BSTs, need an ordering anyway, and can also support looking
of values.

perform some action on all values in a BST that are within
(in natural order):

WHATTODO to all labels in T that are >= L and < U,

ascending natural order. */

visitRange(BST<String> T, String L, String U,

Consumer<BST<String>> whatToDo) {

null) {

compLeft = L.compareTo(T.label ()),

compRight = U.compareTo(T.label ());

(compLeft < 0) /* L < label */

visitRange (T.left(), L, U, whatToDo);

(compLeft <= 0 && compRight > 0) /* L <= label < U */

whatToDo.accept(T);

(compRight > 0) /* label < U */

visitRange (T.right (), L, U, whatToDo);

14:17:56 2018 CS61B: Lecture #23 8

Time for Range Queries

range query ∈ O(h+M), where h is height of tree, and M

data items that turn out to be in the range.

searching the tree below for all values 25 ≤ x < 40.

nodes are never looked at. Starred nodes are looked at but
The h comes from the starred nodes; theM comes from

non-dashed nodes.

42*

21*

12

30

22* 35

71

50

45 55

90

80 100

14:17:56 2018 CS61B: Lecture #23 9

Ordered Sets and Range Queries in Java

SortedSet supports range queries with views of set:

S.headSet(U): subset of S that is < U.

S.tailSet(L): subset that is ≥ L.

S.subSet(L,U): subset that is ≥ L, < U.

views modify S.

to, e.g., add to a headSet beyond U are disallowed.

through a view to process a range:

SortedSet<String> fauna = new TreeSet<String>

(Arrays.asList ("axolotl", "elk", "dog", "hartebeest", "duck"));

String item : fauna.subSet ("bison", "gnu"))

System.out.printf ("%s, ", item);

dog, duck, elk,”

14:17:56 2018 CS61B: Lecture #23 10

TreeSet

type TreeSet<T> requires either that T be Comparable,
provide a Comparator, as in:

SortedSet<String> rev fauna = new TreeSet<String>(Collections.reverseOrder());

is a type of function object:

Comparator<T> {

Return <0 if LEFT<RIGHT, >0 if LEFT>RIGHT, else 0. */

compare(T left, T right);

with what Comparator<T extends Comparable<T>> is all

example, the reverseOrder comparator is defined like this:

Comparator that gives the reverse of natural order. */

extends Comparable<T>> Comparator<T> reverseOrder() {

figures out this lambda expression is a Comparable<T>.

(x, y) -> y.compareTo(x);

14:17:56 2018 CS61B: Lecture #23 11

Example of Representation: BSTSet

representation for
and subsets.

BST, plus
any).

expensive!

SortedSet<String>

fauna = new BSTSet<String>(stuff);
subset1 = fauna.subSet("bison","gnu");

subset2 = subset1.subSet("axolotl","dog");

∞

sentinel
hartebeest

dog

axolotl elk

duck

bison
gnu

bison

dog

14:17:56 2018 CS61B: Lecture #23 12


	CS61B Lecture #23
	Priority Queues, Heaps
	Heaps
	Example: Inserting into a simple heap
	Heap insertion continued
	Removing Largest from Heap
	Heaps in Arrays
	Ranges
	Time for Range Queries
	Ordered Sets and Range Queries in Java
	TreeSet
	Example of Representation: BSTSet

