Back to Simple Search

n is OK for small data sets, bad for large.

rch would be OK if we could rapidly narrow the search
ns.

[in constant time could put any item in our data set into
pucket, where # buckets stays within a constant factor

that buckets contain roughly equal numbers of keys.
would be constant time.

[01:08 2018 CS61B: Lecture #24 2

External chaining

buckets.
is a list of data items.

#3300 ——=100] ——={1500 |
Lo T

1199\ |

:ts have same length, but average is N/M = L, the load

|, hash function must avoid collisions: keys that “hash”
es.

01:08 2018 CS61B: Lecture #24 4

Filling the Table

y to be) constant-time lookup, need to keep #buckets
ant factor of #items.

ole when load factor gets higher than some limit.
wst re-hash all table items.
eration constant time per item,

ng table size each time, get constant amortized time
1 and lookup

hat is, that our hash function is good).

01:08 2018 CS61B: Lecture #24 6

CS61B Lecture #24: Hashing

[01:08 2018 CS61B: Lecture #24 1

Hash functions

wst have way to convert key to bucket number: a hash

y/ 2 aamixture; a jumble. bamess." Concise Oxford
v, eighth edition

lata items.

Longs, evenly spread over the range 0..2% — 1.

teep maximum search to L = 2 items.

function h(K) = K%M, where M = N/L =100 is the
" buckets: 0 < h(K) < M.

2, 433, and 10002332482 go into different buckets,
)0210, and 210 all go into the same bucket.

01:08 2018 CS61B: Lecture #24 3

ching the Chains: Open Addressing

e data item in each bucket.
is a collision, and bucket is full, just use another.
i to do this:

ibes: If thereisa collisionat h(K), try h(K)+m, h(K)+
wrap around at end).

: probes: h(K) +m, h(K) +m?, ...

shing: h(K) + I(K), h(K) + 21/(K), etc.

) = K%M, with M = 10, linear probes with m = 1.

11, 3,102, 9, 18, 108, 309 to empty table.

[2 [o [3 [102 | 309 | | 18 |

9

et slow, even when table is far from full.
ature on this technique, but
just settle for external chaining.

01:08 2018 CS61B: Lecture #24 5

Functions: Other Data Structures I

List, LinkedList, efc.) are analagous to strings: e.g.,

= 1; Iterator i = list.iterator();
hasNext()) {

obj = i.next();

de =

lashCode

bj==null ? 0 : obj.hashCode());

e spent computing hash function by not looking at entire
mple: look only at first few items (if dealing with a List

E).
collisions, but does not cause equal things to go to dif-
tts.

[01:08 2018 CS61B: Lecture #24 8

Identity Hash Functions

ress of object (*hash on identity") if distinct (!=) ob-
ser considered equal.

Won't work for Strings, because .equal Strings could
:nt buckets:

= "Hello",
= H+ ", world!",
= "Hello, world!";

als(S2),but 81 != S2.

01:08 2018 CS61B: Lecture #24 10

sial Case: Monotonic Hash Functions

hash function is monotonic: either nonincreasing or
ing.

2y ky > ko, then]L(lﬁ) > h(k’z).

: time-stamped records; key is the time.

unction is to have one bucket for every hour.

, you can use a hash table to speed up range queries

: applied to strings? When would it work well?

01:08 2018 CS61B: Lecture #24 12

Hash Functions: Strings

"s0s1- - s,—1" want function that takes all characters
sitions into account.

g with so+s1+ ...+ 8,12
Java uses

h(s)=s0-31" 531" 24 .. 45,1
dulo 2%2 as in Java int arithmetic.

o a table index in 0..N — 1, compute h(s)%N (but don't
e that is multiple of 31!)

fo compute as you might think; don't even need multipli-

o

i =0; i< s.length (O; i += 1)
£ << 5) - r + s.charAt (i);

[01:08 2018 CS61B: Lecture #24 7

Functions: Other Data Structures II

defined data structures = recursively defined hash
,on a binary tree, one can use something like

7 == null)
sturn 0;
return someHashFunction (T.label ())
" hash(T.left ()) ~ hash(T.right ();

01:08 2018 CS61B: Lecture #24 9

What Java Provides

sct, is function hashCode ().

eturns the identity hash function, or something similar.
OK as a default?]
it for your particular type.

jiven on last slide, is overridden for type String, as well
:s in the Java library, like all kinds of List.

ashtable, HashSet, and HashMap use hashCode fo give
-up of objects.

yType,ValueType> map =
ashMap<> (approximate size, load factor) ;

v, value); // Map KEY -> VALUE.

t (someKey) // VALUE last mapped to by SOMEKEY.
ntainsKey(someKey) // Is SOMEKEY mapped?

7Set) // All keys in MAP (a Set)

01:08 2018 CS618: Lecture #2411

Characteristics

pd hash function, add, lookup, deletion take ©(1) time,

es where one looks up equal keys.

for range queries: "Give me every name between Martin
[Why?]

robably not a good idea for small sets that you rapidly
iscard [why?]

[01:08 2018 CS61B: Lecture #24 14

Perfect Hashing

of keys is fixed.

e hash function might then hash every key to a differ-
rfect hashing.

| there is no search along a chain or in an open-address
the element at the hash value is or is not equal to the

, might use first, middle, and last letters of a string
-digit base-26 numeral). Would work if those letters
all strings in the seft.

e the Java method, but tweak the multipliers until all
different results.

[01:08 2018 CS61B: Lecture #24 13

Comparing Search Structures

ms, k is #answers to query.

Bushy “Good"
Unordered Sorted Search Hash

List Array Tree Table Heap

o) o(gN) ©(gN) ©O{1) ©N)
zd)| O(1) O(N) O(lgN) O(1) ©O(gN)

O(N) Ok+IgN) O(k+I1gN) O(N) O(N)

O(N) (1) O(gN) ©O(N) o1
st | O(N) o(1) O(gN) O(N) O(gN)

01:08 2018

CS61B: Lecture #24 15

	CS61B Lecture #24: Hashing
	Back to Simple Search
	Hash functions
	External chaining
	Ditching the Chains: Open Addressing
	Filling the Table
	Hash Functions: Strings
	Hash Functions: Other Data Structures I
	Hash Functions: Other Data Structures II
	Identity Hash Functions
	What Java Provides
	Special Case: Monotonic Hash Functions
	Perfect Hashing
	Characteristics
	Comparing Search Structures

