
CS61B Lecture #26

algorithms: why?

Sort.

13:43:34 2018 CS61B: Lecture #26 1

Purposes of Sorting

supports searching

search standard example

supports other kinds of search:

there two equal items in this set?

there two items in this set that both have the same value for
X?

my nearest neighbors?

numerous unexpected algorithms, such as convex hull (small-
polygon enclosing set of points).

13:43:34 2018 CS61B: Lecture #26 2

Some Definitions

algorithm (or sort) permutes (re-arranges) a sequence of
brings them into order, according to some total order.

order, �, is:

� y or y � x for all x, y.

Reflexive: x � x;

Antisymmetric: x � y and y � x iff x = y.

Transitive: x � y and y � z implies x � z.

our orderings may treat unequal items as equivalent:

there can be two dictionary definitions for the same word.
sort only by the word being defined (ignoring the defini-
then sorting could put either entry first.

that does not change the relative order of equivalent en-
(compared to the input) is called stable.

13:43:34 2018 CS61B: Lecture #26 3

Classifications

sorts keep all data in primary memory.

sorts process large amounts of data in batches, keeping
fit in secondary storage (in the old days, tapes).

Comparison-based sorting assumes only thing we know about keys is

sorting uses more information about key structure.

sorting works by repeatedly inserting items at their ap-
positions in the sorted sequence being constructed.

sorting works by repeatedly selecting the next larger
item in order and adding it to one end of the sorted se-

being constructed.

13:43:34 2018 CS61B: Lecture #26 4

Arrays of Primitive Types in the Java Library

library provides static methods to sort arrays in the class
java.util.Arrays.

primitive type P other than boolean, there are

all elements of ARR into non-descending order. */

void sort(P[] arr) { ... }

elements FIRST .. END-1 of ARR into non-descending

order. */

void sort(P[] arr, int first, int end) { ... }

all elements of ARR into non-descending order,

possibly using multiprocessing for speed. */

void parallelSort(P[] arr) { ... }

elements FIRST .. END-1 of ARR into non-descending

order, possibly using multiprocessing for speed. */

void parallelSort(P[] arr, int first, int end) {...}

13:43:34 2018 CS61B: Lecture #26 5

Arrays of Reference Types in the Java Library

reference types, C, that have a natural order (that is, that im-
java.lang.Comparable), we have four analogous methods

(one-argument sort, three-argument sort, and two parallelSort

all elements of ARR stably into non-descending

order. */

C extends Comparable<? super C>> sort(C[] arr) {...}

reference types, R, we have four more:
all elements of ARR stably into non-descending order

according to the ordering defined by COMP. */

<R> void sort(R[] arr, Comparator<? super R> comp) {...}

fancy generic arguments?

13:43:34 2018 CS61B: Lecture #26 6



Arrays of Reference Types in the Java Library

reference types, C, that have a natural order (that is, that im-
java.lang.Comparable), we have four analogous methods

(one-argument sort, three-argument sort, and two parallelSort

all elements of ARR stably into non-descending

order. */

C extends Comparable<? super C>> sort(C[] arr) {...}

reference types, R, we have four more:
all elements of ARR stably into non-descending order

according to the ordering defined by COMP. */

<R> void sort(R[] arr, Comparator<? super R> comp) {...}

fancy generic arguments?

to allow types that have compareTo methods that apply
general types.

13:43:34 2018 CS61B: Lecture #26 7

Sorting Lists in the Java Library

java.util.Collections contains two methods similar to
methods for arrays of reference types:
all elements of LST stably into non-descending

order. */

C extends Comparable<? super C>> sort(List<C> lst) {...}

all elements of LST stably into non-descending

order according to the ordering defined by COMP. */

<R> void sort(List<R> , Comparator<? super R> comp) {...}

instance method in the List<R> interface itself:

all elements of LST stably into non-descending

order according to the ordering defined by COMP. */

sort(Comparator<? super R> comp) {...}

13:43:34 2018 CS61B: Lecture #26 8

Examples

static java.util.Arrays.*;

static java.util.Collections.*;

String[] or List<String>, into non-descending order:

// or ...

reverse order (Java 8):

(String x, String y) -> { return y.compareTo(x); });

Collections.reverseOrder()); // or

X.sort(Collections.reverseOrder()); // for X a List

..., X[100] in array or List X (rest unchanged):

10, 101);

..., L[100] in list L (rest unchanged):

sort(L.sublist(10, 101));

13:43:34 2018 CS61B: Lecture #26 9

Sorting by Insertion

with empty sequence of outputs.

item from input, inserting into output sequence at right

good for small sets of data.

or linked list, time for find + insert of one item is at
where k is # of outputs so far.

us a Θ(N 2) algorithm (worst case as usual).

more?

13:43:34 2018 CS61B: Lecture #26 10

Inversions

Θ(N) comparisons if already sorted.

typical implementation for arrays:

1; i < A.length; i += 1) {

A[i];

i-1; j >= 0; j -= 1) {

(A[j].compareTo(x) <= 0) /* (1) */

A[j]; /* (2) */

executes for each j ≈ how far x must move.

withinK of proper places, then takesO(KN) operations.

for any amount of nearly sorted data.

measure of unsortedness: # of inversions: pairs that are out
0 when sorted, N(N − 1)/2 when reversed).

execution of (2) decreases inversions by 1.

13:43:34 2018 CS61B: Lecture #26 11

Shell’s sort

Improve insertion sort by first sorting distant elements:

subsequences of elements 2k − 1 apart:

items #0, 2k − 1, 2(2k − 1), 3(2k − 1), . . ., then

items #1, 1 + 2k − 1, 1 + 2(2k − 1), 1 + 3(2k − 1), . . ., then

items #2, 2 + 2k − 1, 2 + 2(2k − 1), 2 + 3(2k − 1), . . ., then

items #2k − 2, 2(2k − 1)− 1, 3(2k − 1)− 1, . . .,

time an item moves, can reduce #inversions by as much as

subsequences of elements 2k−1 − 1 apart:

items #0, 2k−1 − 1, 2(2k−1 − 1), 3(2k−1 − 1), . . ., then

items #1, 1 + 2k−1 − 1, 1 + 2(2k−1 − 1), 1 + 3(2k−1 − 1), . . .,

insertion sort (20 = 1 apart), but with most inversions

3/2) (take CS170 for why!).

13:43:34 2018 CS61B: Lecture #26 12



Example of Shell’s Sort

#I #C

11 10 9 8 7 6 5 4 3 2 1 0 120 0

11 10 9 8 7 6 5 4 3 2 1 15 91 1

4 3 2 1 14 13 12 11 10 9 8 15 42 11

4 6 5 7 8 10 9 11 13 12 14 15 4 31

4 5 6 7 8 9 10 11 12 13 14 15 0 50

left.
comparisons used to sort subsequences by insertion sort.

13:43:34 2018 CS61B: Lecture #26 13


	CS61B Lecture #26
	Purposes of Sorting
	Some Definitions
	Classifications
	Sorting Arrays of Primitive Types in the Java Library
	Sorting Arrays of Reference Types in the Java Library
	Sorting Lists in the Java Library
	Examples
	Sorting by Insertion
	Inversions
	Shell's sort
	Example of Shell's Sort

