
Public-Service Announcement I

application for Introduction to Mathematical Thinking, a 2-
that aims to develop mathematical maturity and pre-

students for CS 70, is now live!
http://apply.imt-decal.org. Applications are due on Friday,

help make CS 70 more accessible, we’re starting In-
to Mathematical Thinking, a 2-unit DeCal meant to

students to some ideas and concepts in discrete mathe-
before they’re tested on them in CS 70. The course will

such as proof techniques, set theory, number the-
combinatorics. We’ve worked with professors that have

70 to pick these specific topics.

the full list of topics, along with the FAQs, at the
website: http://imt-decal.org.”

00:07:10 2018 CS61B: Lecture #3 1

Public-Service Announcement II

Senator Chow is looking for applicants to intern in her
year. Interns could choose from a variety of commit-

(Publications/Media, UC Berkeley Club Recruitment Portal
Development, Christian Committee, etc.), adding resume expe-

becoming ingratiated in a positive community driving
campus.

can be found here: tinyurl.com/SenatorChowApp

students interested in CS opportunities specifically, Sen-
office is working to develop a platform similar to

on campus for club recruitment and extracurricular
communication. As such, we need front-end coders and design-

as back end coders.”

00:07:10 2018 CS61B: Lecture #3 2

CS61B Lecture #3

are forgiving during the first week or so, but try to get
submitted by Thursday night. DBC: Let us know if you can’t

something to work!

particular, there are almost 60 people who have accounts but do
repositories. You cannot hand anything in without the
get this part of the lab done!

there are about 950 students with accounts, which is sub-
less than the enrollment + waitlist. You must have an ac-

have a repo, which you need to turn things in!

crowded, so I may very well start dropping people who
to be doing the labs and homework.

encourage signing up for classes with conflicting lectures,
there is a way to seek an exception. You will have a final
you have a lecture conflict; we do not consider such con-

valid grounds to take an alternative final.

00:07:10 2018 CS61B: Lecture #3 3

More Iteration: Sort an Array

Print out the command-line arguments in lexicographic or-

the quick brown fox jumped over the lazy dog

fox jumped lazy over quick the the

Sort {

print WORDS lexicographically. */

void main(String[] words) {

0, words.length-1);

print(words);

A[L..U], with all others unchanged. */

sort(String[] A, int L, int U) { /* "TOMORROW" */ }

one line, separated by blanks. */

print(String[] A) { /* "TOMORROW" */ }

00:07:10 2018 CS61B: Lecture #3 4

How do We Know If It Works?

refers to the testing of individual units (methods, classes)
program, rather than the whole program.

class, we mainly use the JUnit tool for unit testing.

AGTestYear.java in lab #1.

testing refers to the testing of entire (integrated) set
modules—the whole program.

course, we’ll look at various ways to run the program against
inputs and checking the output.

testing refers to testing with the specific goal of check-
fixes, enhancements, or other changes have not introduced

(regressions).

00:07:10 2018 CS61B: Lecture #3 5

Test-Driven Development

tests first.

unit at a time, run tests, fix and refactor until it works.

really going to push it in this course, but it is useful and
following.

00:07:10 2018 CS61B: Lecture #3 6

Testing sort

pretty easy: just give a bunch of arrays to sort and then
they each get sorted properly.

make sure we cover the necessary cases:

cases. E.g., empty array, one-element, all elements the

Representative “middle” cases. E.g., elements reversed, elements
one pair of elements reversed,

00:07:10 2018 CS61B: Lecture #3 7

Simple JUnit

package provides some handy tools for unit testing.

annotation @Test on a method tells the JUnit machinery
method.

annotation in Java provides information about a method, class,
can be examined within Java itself.)

of methods with names beginning with assert then allow
cases to check conditions and report failures.

example.]

00:07:10 2018 CS61B: Lecture #3 8

Selection Sort

items A[L..U], with all others unchanged. */

sort(String[] A, int L, int U) {
{

/*(Index s.t. A[k] is largest in A[L],...,A[U])*/;

A[k] with A[U] }*/;
items L to U-1 of A. }*/;

Well, OK, not quite.

00:07:10 2018 CS61B: Lecture #3 9

Selection Sort

items A[L..U], with all others unchanged. */

sort(String[] A, int L, int U) {
{

indexOfLargest(A, L, U);

A[k] with A[U] }*/;
items L to U-1 of A. }*/;

I0<=k<=I1, such that V[k] is largest element among

... V[I1]. Requires I0<=I1. */

indexOfLargest(String[] V, int i0, int i1) {

00:07:10 2018 CS61B: Lecture #3 10

Selection Sort

items A[L..U], with all others unchanged. */

sort(String[] A, int L, int U) {
{

indexOfLargest(A, L, U);

A[k] with A[U] }*/;
L, U-1); // Sort items L to U-1 of A

I0<=k<=I1, such that V[k] is largest element among

... V[I1]. Requires I0<=I1. */

indexOfLargest(String[] V, int i0, int i1) {

00:07:10 2018 CS61B: Lecture #3 11

Selection Sort

items A[L..U], with all others unchanged. */

sort(String[] A, int L, int U) {
{

indexOfLargest(A, L, U);

tmp = A[k]; A[k] = A[U]; A[U] = tmp;

L, U-1); // Sort items L to U-1 of A

I0<=k<=I1, such that V[k] is largest element among

... V[I1]. Requires I0<=I1. */

indexOfLargest(String[] V, int i0, int i1) {

00:07:10 2018 CS61B: Lecture #3 12

Selection Sort

items A[L..U], with all others unchanged. */

sort(String[] A, int L, int U) {
{

indexOfLargest(A, L, U);

tmp = A[k]; A[k] = A[U]; A[U] = tmp;

L, U-1); // Sort items L to U-1 of A

iterative version look like?

00:07:10 2018 CS61B: Lecture #3 13

Selection Sort

items A[L..U], with all others unchanged. */

sort(String[] A, int L, int U) {
{

indexOfLargest(A, L, U);

tmp = A[k]; A[k] = A[U]; A[U] = tmp;

L, U-1); // Sort items L to U-1 of A

version:

U) {
indexOfLargest(A, L, U);

tmp = A[k]; A[k] = A[U]; A[U] = tmp;

00:07:10 2018 CS61B: Lecture #3 14

Find Largest

I0<=k<=I1, such that V[k] is largest element among

... V[I1]. Requires I0<=I1. */

indexOfLargest(String[] V, int i0, int i1) {

i1;

00:07:10 2018 CS61B: Lecture #3 15

Find Largest

I0<=k<=I1, such that V[k] is largest element among

... V[I1]. Requires I0<=I1. */

indexOfLargest(String[] V, int i0, int i1) {
i1)

i1;

(i0 < i1) */ {

00:07:10 2018 CS61B: Lecture #3 16

Find Largest

I0<=k<=I1, such that V[k] is largest element among

... V[I1]. Requires I0<=I1. */

indexOfLargest(String[] V, int i0, int i1) {
i1)

i1;

(i0 < i1) */ {
/*(index of largest value in V[i0 + 1..i1])*/;

/*(whichever of i0 and k has larger value)*/;

00:07:10 2018 CS61B: Lecture #3 17

Find Largest

I0<=k<=I1, such that V[k] is largest element among

... V[I1]. Requires I0<=I1. */

indexOfLargest(String[] V, int i0, int i1) {
i1)

i1;

(i0 < i1) */ {
indexOfLargest(V, i0 + 1, i1);

/*(whichever of i0 and k has larger value)*/;

00:07:10 2018 CS61B: Lecture #3 18

Find Largest

I0<=k<=I1, such that V[k] is largest element among

... V[I1]. Requires I0<=I1. */

indexOfLargest(String[] V, int i0, int i1) {
i1)

i1;

(i0 < i1) */ {
indexOfLargest(V, i0 + 1, i1);

(V[i0].compareTo(V[k]) > 0) ? i0 : k;

(V[i0].compareTo(V[k]) > 0) return i0; else return k;

into an iterative version is tricky: not tail recursive.

the arguments to compareTo the first time it’s called?

00:07:10 2018 CS61B: Lecture #3 19

Iteratively Find Largest

I0<=k<=I1, such that V[k] is largest element among

... V[I1]. Requires I0<=I1. */

indexOfLargest(String[] V, int i0, int i1) {
i1)

;

(i0 < i1) */ {
indexOfLargest(V, i0 + 1, i1);

(V[i0].compareTo(V[k]) > 0) ? i0 : k ;

(V[i0].compareTo(V[k]) > 0) return i0; else return k;

// Deepest iteration

...?; i ...?)

00:07:10 2018 CS61B: Lecture #3 20

Iteratively Find Largest

I0<=k<=I1, such that V[k] is largest element among

... V[I1]. Requires I0<=I1. */

indexOfLargest(String[] V, int i0, int i1) {
i1)

;

(i0 < i1) */ {
indexOfLargest(V, i0 + 1, i1);

(V[i0].compareTo(V[k]) > 0) ? i0 : k ;

(V[i0].compareTo(V[k]) > 0) return i0; else return k;

// Deepest iteration

...?; i ...?)

00:07:10 2018 CS61B: Lecture #3 21

Iteratively Find Largest

I0<=k<=I1, such that V[k] is largest element among

... V[I1]. Requires I0<=I1. */

indexOfLargest(String[] V, int i0, int i1) {
i1)

;

(i0 < i1) */ {
indexOfLargest(V, i0 + 1, i1);

(V[i0].compareTo(V[k]) > 0) ? i0 : k ;

(V[i0].compareTo(V[k]) > 0) return i0; else return k;

// Deepest iteration

- 1; i >= i0; i -= 1)

00:07:10 2018 CS61B: Lecture #3 22

Iteratively Find Largest

I0<=k<=I1, such that V[k] is largest element among

... V[I1]. Requires I0<=I1. */

indexOfLargest(String[] V, int i0, int i1) {
i1)

;

(i0 < i1) */ {
indexOfLargest(V, i0 + 1, i1);

(V[i0].compareTo(V[k]) > 0) ? i0 : k ;

(V[i0].compareTo(V[k]) > 0) return i0; else return k;

// Deepest iteration

- 1; i >= i0; i -= 1)

(V[i].compareTo(V[k]) > 0) ? i : k ;

00:07:10 2018 CS61B: Lecture #3 23

Finally, Printing

on one line, separated by blanks. */

print(String[] A) {
= 0; i < A.length; i += 1)

System.out.print(A[i] + " ");

System.out.println();

introduced a new syntax for the for loop here: */

s : A)

System.out.print(s + " ");

you like, but let’s not stress over it yet! */

00:07:10 2018 CS61B: Lecture #3 24

Another Problem

of integers, A, of length N > 0, find the smallest index,
elements at indices ≥ k and < N − 1 are greater than
rotate elements k to N − 1 right by one. For example,

as

3, 0, 12, 11, 9, 15, 22, 12 }

as

3, 0, 12, 11, 9, 12, 15, 22 }

example,

3, 0, 12, 11, 9, 15, 22, -2 }

9, 4, 3, 0, 12, 11, 9, 15, 22 }

00:07:10 2018 CS61B: Lecture #3 25

Your turn

Shove {

Rotate elements A[k] to A[A.length-1] one element to the

right, where k is the smallest index such that elements

through A.length-2 are all larger than A[A.length-1].

void moveOver(int[] A) {
FILL IN

00:07:10 2018 CS61B: Lecture #3 26

	Public-Service Announcement I
	Public-Service Announcement II
	CS61B Lecture #3
	More Iteration: Sort an Array
	How do We Know If It Works?
	Test-Driven Development
	Testing sort
	Simple JUnit
	Selection Sort
	Find Largest
	Iteratively Find Largest
	Finally, Printing
	Another Problem
	Your turn

