ly Efficient Use of Keys: the Trie

much about cost of comparisons.

worst case is length of string.

nould throw extra factor of key length, L, into costs:
parisons really means ©(M L) operations.

for key X, keep looking at same chars of X M times.
tter? Can we get search cost to be O(L)?

multi-way decision tree, with one decision per character

9:39 2018 CS61B: Lecture #31 2

Adding Item to a Trie

ding bat and faceplate.
icked.

abated
]

)yash faceplateD facetO
9:39 2018 CS61B: Lecture #31 4

Scrunching Example

(unrelated to Tries on preceding slides)

rrays, each indexed 0..9

4 5 6 7 8 9 O 1 2 3 4 5 6 7 8 9
SENFEAN ANV SN N FE AN AN FEFEANAN
trout pike ghee milk oil
4 5 6 7 8 9
SENEEANANANEE
cumin mace

them, but keep track of original index of each item:

A3 0 1* 2 3 4 B~ 6 7 8 9*
A2 0 1 2~ 3 4 5 6 7% 8 9
\: 0 1 2 3 4 5 6 7% 8 9
[o]1]1]-1]2]5]5]7[6]7]9
31” | \‘“\‘“\‘\‘\‘
bass ‘ trout | pike ‘ ‘
hee milk oil
salt cumin mace
9:39 2018 CS61B: Lecture #31 6

CS61B Lecture #31

ed search structures (DS(IJ), Chapter 9

pm Numbers (DS(IJ), Chapter 11)

9:39 2018 CS61B: Lecture #31 1

The Trie: Example

3, abash, abate, abbas, axolotl, axe, fabric, facet}
show paths followed for “abash” and “fabric”
| node corresponds to a possible prefix.

n path to node = that prefix.

abateO

abashO

9:39 2018 CS61B: Lecture #31 3

A Side-Trip: Scrunching
»bvious implementation for internal nodes is array in-
aracter.
erformance, L length of search key.
independent of N, number of keys. Is there a depen-

'ays are sparsely populated by non-null values—waste of

arrays on top of each other!

:mpty) entries of one array to hold non-null elements of

arkers to tell which entries belong to which array.

9:39 2018 CS61B: Lecture #31 5

robabilistic Balancing: Skip Lists

in be thought of as a kind of n-ary search tree in which
put the keys at “"random” heights.

hought of as an ordered list in which one can skip large

ple:

e e e
(25] [30] [40] [50] [55] [60]

| J=
iﬁi‘====§
[55] [fodl [i5] 20 25 30 [0 (50 [

ttart at top layer on left, search until next step would
nen go down one layer and repeat.

BLLLL

, we search for 125 and 127. Gray nodes are looked at;
hodes are overshoots.

ne nodes were chosen randomly so that there are about
hodes that are > k high as there are that are k high.

hes fast with high probability.

9:39 2018 CS61B: Lecture #31 8

robabilistic Balancing: Skip Lists

n be thought of as a kind of n-ary search tree in which
) put the keys at "random” heights.

thought of as an ordered list in which one can skip large

\ple:

g

N N e e
2] (23] [30] f4o] [50] 551 [60]

&L=

e =
[95] 00 [i15) 20 [25 130 (i@ {50 [
tart at top layer on left, search until next step would

nen go down one layer and repeat.

, we search for 125 and 127. Gray nodes are looked at;
nodes are overshoots.

he nodes were chosen randomly so that there are about
nodes that are > k high as there are that are £ high.

hes fast with high probability.

9:39 2018 CS61B: Lecture #31 10

robabilistic Balancing: Skip Lists

n be thought of as a kind of n-ary search tree in which
) put the keys at "random” heights.

thought of as an ordered list in which one can skip large

\ple:

g

N e N e
2] (23] [30] f40] (50] 551 [60]

&L=

e =
[95] 00 15 20 [25 130 (@ {50 [
tart at top layer on left, search until next step would

nen go down one layer and repeat.

, we search for 125 and 127. Gray nodes are looked at;
nodes are overshoots.

he nodes were chosen randomly so that there are about
nodes that are > k high as there are that are £ high.

hes fast with high probability.

9:39 2018 CS61B: Lecture #31 12

Practicum

ng idea is cute, but
pd if we want to expand our trie.
plicated.

nore useful for representing large, sparse, fixed tables
rows and columns.

, number of children in trie tends to drop drastically
rs a few levels down from the root.

ce, might as well use linked lists to represent set of
en...

rrays for the first few levels, which are likely to have
n.

9:39 2018 CS61B: Lecture #31 7

robabilistic Balancing: Skip Lists

in be thought of as a kind of n-ary search tree in which
) put the keys at “random” heights.

thought of as an ordered list in which one can skip large

\ple:

—

N N N e
0] (z5] [30] f40] 50] 551 [eo]

|| |
EEEES
[95] fod [115] [r2g 125 {30 {40 {50 [56

tart at top layer on left, search until next step would
nen go down one layer and repeat.

ELLLL]
Ol ||

, we search for 125 and 127. Gray nodes are looked at;
nodes are overshoots.

he nodes were chosen randomly so that there are about
nodes that are > k high as there are that are k high.

hes fast with high probability.

9:39 2018 CS61B: Lecture #31 9

robabilistic Balancing: Skip Lists

in be thought of as a kind of n-ary search tree in which
1 put the keys at “random” heights.

thought of as an ordered list in which one can skip large

\ple:
|

|| =
S
(95] [tod [115] ff2d {25 {30 {49 {50 [SC

tart at top layer on left, search until next step would
nen go down one layer and repeat.

=

NN e
%) [25] (30] [40] [50] (55 [60]

BLLLL
Ol ||

, we search for 125 and 127. Gray nodes are looked at;
nodes are overshoots.

he nodes were chosen randomly so that there are about
nodes that are > k high as there are that are k high.

hes fast with high probability.

9:39 2018 CS61B: Lecture #31 11

robabilistic Balancing: Skip Lists

in be thought of as a kind of n-ary search tree in which
put the keys at “"random” heights.

hought of as an ordered list in which one can skip large

ple:
: =

o

[55] fodl [15] 20l 25 130 @0 (50 [

ttart at top layer on left, search until next step would
nen go down one layer and repeat.

=

N N e
ol (28] (30 [40] (50 55 [60]

ELLLI]
(SIHNN

, we search for 125 and 127. Gray nodes are looked at;
hodes are overshoots.

ne nodes were chosen randomly so that there are about
hodes that are > k high as there are that are k high.

hes fast with high probability.

9:39 2018 CS61B: Lecture #31 14

robabilistic Balancing: Skip Lists

n be thought of as a kind of n-ary search tree in which
) put the keys at "random” heights.

thought of as an ordered list in which one can skip large

\ple:
I

| =
e =
[95] fod [115] [r2q [f25 {30 {49 {50 [S0

tart at top layer on left, search until next step would
nen go down one layer and repeat.

g

N N e e
2] (23] [30] f4o] [50] 551 [60]

ELLLI]
Sl 1]

, we search for 125 and 127. Gray nodes are looked at;
nodes are overshoots.

he nodes were chosen randomly so that there are about
nodes that are > k high as there are that are £ high.

hes fast with high probability.

9:39 2018 CS61B: Lecture #31 16

robabilistic Balancing: Skip Lists

n be thought of as a kind of n-ary search tree in which
) put the keys at "random” heights.

thought of as an ordered list in which one can skip large

\ple:
¥

| =
e =
[95] fod [115] [r2q [f25 {30 {49 {50 [S0

tart at top layer on left, search until next step would
nen go down one layer and repeat.

g

N e N e
2] (23] [30] f40] (50] 551 [60]

ELLLI]
Sl 1]

, we search for 125 and 127. Gray nodes are looked at;
nodes are overshoots.

he nodes were chosen randomly so that there are about
nodes that are > k high as there are that are £ high.

hes fast with high probability.

9:39 2018 CS61B: Lecture #31 18

robabilistic Balancing: Skip Lists

in be thought of as a kind of n-ary search tree in which
put the keys at “random" heights.

hought of as an ordered list in which one can skip large

ple:

=

N N N e
b0l (5] 30] 40l [50] (53] 60l

4
i

=
Toeeeslal
(95] £od [115] (25 (30 [140 50 [0

ttart at top layer on left, search until next step would
nen go down one layer and repeat.

ELLLL]
Ol ||

, we search for 125 and 127. Gray nodes are looked at;
hodes are overshoots.

ne nodes were chosen randomly so that there are about
hodes that are > k high as there are that are £ high.

hes fast with high probability.

9:39 2018 CS61B: Lecture #31 13

robabilistic Balancing: Skip Lists

in be thought of as a kind of n-ary search tree in which
) put the keys at “random” heights.

thought of as an ordered list in which one can skip large

\ple:

—

N N N e
0] (z5] [30] f40] 50] 551 [eo]

4
i

=
Toeeeslal
[95] [od [115] (25 (30 [140 50 [0

tart at top layer on left, search until next step would
nen go down one layer and repeat.

ELLLL]
Ol ||

, we search for 125 and 127. Gray nodes are looked at;
nodes are overshoots.

he nodes were chosen randomly so that there are about
nodes that are > k high as there are that are k high.

hes fast with high probability.

9:39 2018 CS61B: Lecture #31 15

robabilistic Balancing: Skip Lists

in be thought of as a kind of n-ary search tree in which
1 put the keys at “random” heights.

thought of as an ordered list in which one can skip large

\ple:
= = —

1 1 || /=
'==========
7] [25] [30] [40] [50] [55] [60] [90] [95] {00 [i15] 20 (25 {30 (4 150 [

tart at top layer on left, search until next step would
nen go down one layer and repeat.

, we search for 125 and 127. Gray nodes are looked at;
nodes are overshoots.

he nodes were chosen randomly so that there are about
nodes that are > k high as there are that are k high.

hes fast with high probability.

9:39 2018 CS61B: Lecture #31 17

Summary

arch trees allows us to realize O(lg V) performance.
tblack trees:

[V) performance for searches, insertions, deletions.

ood for external storage. Large nodes minimize # of
itions

performance for searches, insertions, and deletions,
s length of key being processed.

fo manage space efficiently.

idea: scrunched arrays share space.

nble ©(lg N) performace for searches, insertions, dele-

plement.

for interesting ideas: probabilistic balance, random-
structures.

9:39 2018 CS61B: Lecture #31 20

tructures that Implement Abstractions

linked lists, circular buffers

et

' Queue: heaps

Set: binary search trees, red-black trees, B-trees,
arrays or linked lists

d Set: hash table

\ap: hash table
o red-black trees, B-trees, sorted arrays or linked lists

9:39 2018 CS61B: Lecture #31 22

Example: Adding and deleting
m initial list:

] I 1
====== ====
(25] [30] [40] [50] [55] [0] [90] [95] 00 [115] |20 [125| 130 {40 {150 [sc]

r, we add 126 and 127 (choosing random heights for
emove 20 and 40:

ts]

AN

1 — I —
====== { 4 4
(30] [50] [55] [0] [90] [95] {0d [15] 20 {25 (126 [f27) {30 (140 {50

s here have been modified.

9:39 2018 CS61B: Lecture #31 19

immary of Collection Abstractions

Multiset
contains, iterator,

Blue: Java has corresponding interface
Green: Java has ho corresponding interface

9:39 2018 CS61B: Lecture #31 21

Corresponding Classes in Java

:ction)
ist, LinkedList, Stack, ArrayBlockingQueue,

et

' Queue: PriorityQueue
Set (SortedSet): TreeSet
d Set: HashSet

\ap: HashMap
p (SortedMap): TreeMap

9:39 2018 CS61B: Lecture #31 23

	CS61B Lecture #31
	Really Efficient Use of Keys: the Trie
	The Trie: Example
	Adding Item to a Trie
	A Side-Trip: Scrunching
	Scrunching Example
	Practicum
	Probabilistic Balancing: Skip Lists
	Example: Adding and deleting
	Summary
	Summary of Collection Abstractions
	Data Structures that Implement Abstractions
	Corresponding Classes in Java

