
CS61B Lecture #31

balanced search structures (DS(IJ), Chapter 9

Pseudo-random Numbers (DS(IJ), Chapter 11)

19:39:39 2018 CS61B: Lecture #31 1

Really Efficient Use of Keys: the Trie

much about cost of comparisons.

worst case is length of string.

should throw extra factor of key length, L, into costs:

comparisons really means Θ(ML) operations.

look for key X , keep looking at same chars of X M times.

better? Can we get search cost to be O(L)?

multi-way decision tree, with one decision per character

19:39:39 2018 CS61B: Lecture #31 2

The Trie: Example

abase, abash, abate, abbas, axolotl, axe, fabric, facet}

show paths followed for “abash” and “fabric”

internal node corresponds to a possible prefix.

in path to node = that prefix.

a

a
✷

b

ab
a

aba
s

abas
h

abash✷

t

abate✷

b

abbas✷

x

ax
e

axe✷

o

axolotl✷

f

f

a

fa
b

fabric✷

c

facet✷

19:39:39 2018 CS61B: Lecture #31 3

Adding Item to a Trie

adding bat and faceplate.

ticked.

a

a
✷

b

ab
a

aba

h

abash✷

t

abate✷

b

abbas✷

x

ax
e

axe✷

o

axolotl✷

b

bat✷

f

f

a

fa
b

fabric✷

c

fac

e

face
p

faceplate✷

t

facet✷

19:39:39 2018 CS61B: Lecture #31 4

A Side-Trip: Scrunching

obvious implementation for internal nodes is array in-
character.

performance, L length of search key.

independent of N , number of keys. Is there a depen-

arrays are sparsely populated by non-null values—waste of

arrays on top of each other!

empty) entries of one array to hold non-null elements of

markers to tell which entries belong to which array.

19:39:39 2018 CS61B: Lecture #31 5

Scrunching Example

(unrelated to Tries on preceding slides)

arrays, each indexed 0..9

trout pike

A2:

ghee milk oil

cumin mace

3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

3 4 5 6 7 8 9

them, but keep track of original index of each item:

A123:

bass

salt
ghee

trout

cumin

pike
milk oil

mace

0 -1 1 -1 2 5 5 7 6 7 9
A1: 0* 1 2 3 4 5* 6 7* 8 9

A2: 0 1 2* 3 4 5 6* 7* 8 9
A3: 0 1* 2 3 4 5* 6 7 8 9*

19:39:39 2018 CS61B: Lecture #31 6



Practicum

scrunching idea is cute, but

good if we want to expand our trie.

complicated.

more useful for representing large, sparse, fixed tables
many rows and columns.

Furthermore, number of children in trie tends to drop drastically
gets a few levels down from the root.

practice, might as well use linked lists to represent set of
children. . .

arrays for the first few levels, which are likely to have
children.

19:39:39 2018 CS61B: Lecture #31 7

Probabilistic Balancing: Skip Lists

can be thought of as a kind of n-ary search tree in which
to put the keys at “random” heights.

thought of as an ordered list in which one can skip large

example:

25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

start at top layer on left, search until next step would
then go down one layer and repeat.

above, we search for 125 and 127. Gray nodes are looked at;
nodes are overshoots.

the nodes were chosen randomly so that there are about
nodes that are > k high as there are that are k high.

searches fast with high probability.

19:39:39 2018 CS61B: Lecture #31 8

Probabilistic Balancing: Skip Lists

can be thought of as a kind of n-ary search tree in which
to put the keys at “random” heights.

thought of as an ordered list in which one can skip large

example:

20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

start at top layer on left, search until next step would
then go down one layer and repeat.

above, we search for 125 and 127. Gray nodes are looked at;
nodes are overshoots.

the nodes were chosen randomly so that there are about
nodes that are > k high as there are that are k high.

searches fast with high probability.

19:39:39 2018 CS61B: Lecture #31 9

Probabilistic Balancing: Skip Lists

can be thought of as a kind of n-ary search tree in which
to put the keys at “random” heights.

thought of as an ordered list in which one can skip large

example:

20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

start at top layer on left, search until next step would
then go down one layer and repeat.

above, we search for 125 and 127. Gray nodes are looked at;
nodes are overshoots.

the nodes were chosen randomly so that there are about
nodes that are > k high as there are that are k high.

searches fast with high probability.

19:39:39 2018 CS61B: Lecture #31 10

Probabilistic Balancing: Skip Lists

can be thought of as a kind of n-ary search tree in which
to put the keys at “random” heights.

thought of as an ordered list in which one can skip large

example:

20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

start at top layer on left, search until next step would
then go down one layer and repeat.

above, we search for 125 and 127. Gray nodes are looked at;
nodes are overshoots.

the nodes were chosen randomly so that there are about
nodes that are > k high as there are that are k high.

searches fast with high probability.

19:39:39 2018 CS61B: Lecture #31 11

Probabilistic Balancing: Skip Lists

can be thought of as a kind of n-ary search tree in which
to put the keys at “random” heights.

thought of as an ordered list in which one can skip large

example:

20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

start at top layer on left, search until next step would
then go down one layer and repeat.

above, we search for 125 and 127. Gray nodes are looked at;
nodes are overshoots.

the nodes were chosen randomly so that there are about
nodes that are > k high as there are that are k high.

searches fast with high probability.

19:39:39 2018 CS61B: Lecture #31 12



Probabilistic Balancing: Skip Lists

can be thought of as a kind of n-ary search tree in which
to put the keys at “random” heights.

thought of as an ordered list in which one can skip large

example:

20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

start at top layer on left, search until next step would
then go down one layer and repeat.

above, we search for 125 and 127. Gray nodes are looked at;
nodes are overshoots.

the nodes were chosen randomly so that there are about
nodes that are > k high as there are that are k high.

searches fast with high probability.

19:39:39 2018 CS61B: Lecture #31 13

Probabilistic Balancing: Skip Lists

can be thought of as a kind of n-ary search tree in which
to put the keys at “random” heights.

thought of as an ordered list in which one can skip large

example:

20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

start at top layer on left, search until next step would
then go down one layer and repeat.

above, we search for 125 and 127. Gray nodes are looked at;
nodes are overshoots.

the nodes were chosen randomly so that there are about
nodes that are > k high as there are that are k high.

searches fast with high probability.

19:39:39 2018 CS61B: Lecture #31 14

Probabilistic Balancing: Skip Lists

can be thought of as a kind of n-ary search tree in which
to put the keys at “random” heights.

thought of as an ordered list in which one can skip large

example:

20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

start at top layer on left, search until next step would
then go down one layer and repeat.

above, we search for 125 and 127. Gray nodes are looked at;
nodes are overshoots.

the nodes were chosen randomly so that there are about
nodes that are > k high as there are that are k high.

searches fast with high probability.

19:39:39 2018 CS61B: Lecture #31 15

Probabilistic Balancing: Skip Lists

can be thought of as a kind of n-ary search tree in which
to put the keys at “random” heights.

thought of as an ordered list in which one can skip large

example:

20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

start at top layer on left, search until next step would
then go down one layer and repeat.

above, we search for 125 and 127. Gray nodes are looked at;
nodes are overshoots.

the nodes were chosen randomly so that there are about
nodes that are > k high as there are that are k high.

searches fast with high probability.

19:39:39 2018 CS61B: Lecture #31 16

Probabilistic Balancing: Skip Lists

can be thought of as a kind of n-ary search tree in which
to put the keys at “random” heights.

thought of as an ordered list in which one can skip large

example:

20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

start at top layer on left, search until next step would
then go down one layer and repeat.

above, we search for 125 and 127. Gray nodes are looked at;
nodes are overshoots.

the nodes were chosen randomly so that there are about
nodes that are > k high as there are that are k high.

searches fast with high probability.

19:39:39 2018 CS61B: Lecture #31 17

Probabilistic Balancing: Skip Lists

can be thought of as a kind of n-ary search tree in which
to put the keys at “random” heights.

thought of as an ordered list in which one can skip large

example:

20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

start at top layer on left, search until next step would
then go down one layer and repeat.

above, we search for 125 and 127. Gray nodes are looked at;
nodes are overshoots.

the nodes were chosen randomly so that there are about
nodes that are > k high as there are that are k high.

searches fast with high probability.

19:39:39 2018 CS61B: Lecture #31 18



Example: Adding and deleting

from initial list:

25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

order, we add 126 and 127 (choosing random heights for
remove 20 and 40:

30 50 55 60 90 95 100 115 120 125 126 127 130 140 150 ∞

nodes here have been modified.

19:39:39 2018 CS61B: Lecture #31 19

Summary

search trees allows us to realize Θ(lgN) performance.

red-black trees:

N) performance for searches, insertions, deletions.

good for external storage. Large nodes minimize # of
operations

) performance for searches, insertions, and deletions,
is length of key being processed.

to manage space efficiently.

idea: scrunched arrays share space.

probable Θ(lgN) performace for searches, insertions, dele-

implement.

Presented for interesting ideas: probabilistic balance, random-
structures.

19:39:39 2018 CS61B: Lecture #31 20

Summary of Collection Abstractions

Multiset
contains, iterator

List
get(n)

Set

Ordered Set
first

Unordered
Set

Priority Queue Sorted Set
subset

Map
contains, iterator

get

Unordered
Map

Ordered
Map

Blue: Java has corresponding interface
Green: Java has no corresponding interface

19:39:39 2018 CS61B: Lecture #31 21

Structures that Implement Abstractions

linked lists, circular buffers

OrderedSet

Priority Queue: heaps

Set: binary search trees, red-black trees, B-trees,
arrays or linked lists

Unordered Set: hash table

Map: hash table

Map: red-black trees, B-trees, sorted arrays or linked lists

19:39:39 2018 CS61B: Lecture #31 22

Corresponding Classes in Java

(Collection)

ArrayList, LinkedList, Stack, ArrayBlockingQueue,

OrderedSet

Priority Queue: PriorityQueue

Set (SortedSet): TreeSet

Unordered Set: HashSet

Map: HashMap

Map (SortedMap): TreeMap

19:39:39 2018 CS61B: Lecture #31 23


	CS61B Lecture #31
	Really Efficient Use of Keys: the Trie
	The Trie: Example
	Adding Item to a Trie
	A Side-Trip: Scrunching
	Scrunching Example
	Practicum
	Probabilistic Balancing: Skip Lists
	Example: Adding and deleting
	Summary
	Summary of Collection Abstractions
	Data Structures that Implement Abstractions
	Corresponding Classes in Java

