
CS61B Lecture #31
Today:

• More balanced search structures (DS(IJ), Chapter 9

Coming Up:

• Pseudo-random Numbers (DS(IJ), Chapter 11)

Last modified: Thu Nov 1 19:39:39 2018 CS61B: Lecture #31 1



Really Efficient Use of Keys: the Trie

• Haven’t said much about cost of comparisons.

• For strings, worst case is length of string.

• Therefore should throw extra factor of key length, L, into costs:

– Θ(M) comparisons really means Θ(ML) operations.

– So to look for key X , keep looking at same chars of X M times.

• Can we do better? Can we get search cost to be O(L)?

Idea: Make a multi-way decision tree, with one decision per character
of key.

Last modified: Thu Nov 1 19:39:39 2018 CS61B: Lecture #31 2



The Trie: Example

• Set of keys

{a, abase, abash, abate, abbas, axolotl, axe, fabric, facet}

• Ticked lines show paths followed for “abash” and “fabric”

• Each internal node corresponds to a possible prefix.

• Characters in path to node = that prefix.

a

a
✷

a✷
b

ab
a

aba
s

abas
e

abase✷

h

abash✷

t

abate✷

b

abbas✷

x

ax
e

axe✷

o

axolotl✷

f

f

a

fa
b

fabric✷

c

facet✷

Last modified: Thu Nov 1 19:39:39 2018 CS61B: Lecture #31 3



Adding Item to a Trie

• Result of adding bat and faceplate.

• New edges ticked.

a

a
✷

a✷
b

ab
a

aba
s

abas
e

abase✷

h

abash✷

t

abate✷

b

abbas✷

x

ax
e

axe✷

o

axolotl✷

b

bat✷

f

f

a

fa
b

fabric✷

c

fac

e

face
p

faceplate✷

t

facet✷

Last modified: Thu Nov 1 19:39:39 2018 CS61B: Lecture #31 4



A Side-Trip: Scrunching

• For speed, obvious implementation for internal nodes is array in-
dexed by character.

• Gives O(L) performance, L length of search key.

• [Looks as if independent of N , number of keys. Is there a depen-
dence?]

• Problem: arrays are sparsely populated by non-null values—waste of
space.

Idea: Put the arrays on top of each other!

• Use null (0, empty) entries of one array to hold non-null elements of
another.

• Use extra markers to tell which entries belong to which array.

Last modified: Thu Nov 1 19:39:39 2018 CS61B: Lecture #31 5



Scrunching Example

Small example: (unrelated to Tries on preceding slides)

• Three leaf arrays, each indexed 0..9

A1:

bass trout pike

A2:

ghee milk oil

A3:

salt cumin mace

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

• Now overlay them, but keep track of original index of each item:

A123:

bass

salt
ghee

trout

cumin

pike
milk oil

mace

0 -1 1 -1 2 5 5 7 6 7 9
A1: 0* 1 2 3 4 5* 6 7* 8 9

A2: 0 1 2* 3 4 5 6* 7* 8 9
A3: 0 1* 2 3 4 5* 6 7 8 9*

Last modified: Thu Nov 1 19:39:39 2018 CS61B: Lecture #31 6



Practicum

• The scrunching idea is cute, but

– Not so good if we want to expand our trie.

– A bit complicated.

– Actually more useful for representing large, sparse, fixed tables
with many rows and columns.

• Furthermore, number of children in trie tends to drop drastically
when one gets a few levels down from the root.

• So in practice, might as well use linked lists to represent set of
node’s children. . .

• . . . but use arrays for the first few levels, which are likely to have
more children.

Last modified: Thu Nov 1 19:39:39 2018 CS61B: Lecture #31 7



Probabilistic Balancing: Skip Lists

• A skip list can be thought of as a kind of n-ary search tree in which
we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large
segments.

• Typical example:

−∞
0

1

2

3

10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

• To search, start at top layer on left, search until next step would
overshoot, then go down one layer and repeat.

• In list above, we search for 125 and 127. Gray nodes are looked at;
darker gray nodes are overshoots.

• Heights of the nodes were chosen randomly so that there are about
1/2 as many nodes that are > k high as there are that are k high.

• Makes searches fast with high probability.

Last modified: Thu Nov 1 19:39:39 2018 CS61B: Lecture #31 8



Probabilistic Balancing: Skip Lists

• A skip list can be thought of as a kind of n-ary search tree in which
we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large
segments.

• Typical example:

−∞
0

1

2

3

10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓
⇒

• To search, start at top layer on left, search until next step would
overshoot, then go down one layer and repeat.

• In list above, we search for 125 and 127. Gray nodes are looked at;
darker gray nodes are overshoots.

• Heights of the nodes were chosen randomly so that there are about
1/2 as many nodes that are > k high as there are that are k high.

• Makes searches fast with high probability.

Last modified: Thu Nov 1 19:39:39 2018 CS61B: Lecture #31 9



Probabilistic Balancing: Skip Lists

• A skip list can be thought of as a kind of n-ary search tree in which
we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large
segments.

• Typical example:

−∞
0

1

2

3

10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓
⇒

• To search, start at top layer on left, search until next step would
overshoot, then go down one layer and repeat.

• In list above, we search for 125 and 127. Gray nodes are looked at;
darker gray nodes are overshoots.

• Heights of the nodes were chosen randomly so that there are about
1/2 as many nodes that are > k high as there are that are k high.

• Makes searches fast with high probability.

Last modified: Thu Nov 1 19:39:39 2018 CS61B: Lecture #31 10



Probabilistic Balancing: Skip Lists

• A skip list can be thought of as a kind of n-ary search tree in which
we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large
segments.

• Typical example:

−∞
0

1

2

3

10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓
⇒

• To search, start at top layer on left, search until next step would
overshoot, then go down one layer and repeat.

• In list above, we search for 125 and 127. Gray nodes are looked at;
darker gray nodes are overshoots.

• Heights of the nodes were chosen randomly so that there are about
1/2 as many nodes that are > k high as there are that are k high.

• Makes searches fast with high probability.

Last modified: Thu Nov 1 19:39:39 2018 CS61B: Lecture #31 11



Probabilistic Balancing: Skip Lists

• A skip list can be thought of as a kind of n-ary search tree in which
we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large
segments.

• Typical example:

−∞
0

1

2

3

10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

⇒

• To search, start at top layer on left, search until next step would
overshoot, then go down one layer and repeat.

• In list above, we search for 125 and 127. Gray nodes are looked at;
darker gray nodes are overshoots.

• Heights of the nodes were chosen randomly so that there are about
1/2 as many nodes that are > k high as there are that are k high.

• Makes searches fast with high probability.

Last modified: Thu Nov 1 19:39:39 2018 CS61B: Lecture #31 12



Probabilistic Balancing: Skip Lists

• A skip list can be thought of as a kind of n-ary search tree in which
we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large
segments.

• Typical example:

−∞
0

1

2

3

10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

⇒

• To search, start at top layer on left, search until next step would
overshoot, then go down one layer and repeat.

• In list above, we search for 125 and 127. Gray nodes are looked at;
darker gray nodes are overshoots.

• Heights of the nodes were chosen randomly so that there are about
1/2 as many nodes that are > k high as there are that are k high.

• Makes searches fast with high probability.

Last modified: Thu Nov 1 19:39:39 2018 CS61B: Lecture #31 13



Probabilistic Balancing: Skip Lists

• A skip list can be thought of as a kind of n-ary search tree in which
we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large
segments.

• Typical example:

−∞
0

1

2

3

10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

⇒

• To search, start at top layer on left, search until next step would
overshoot, then go down one layer and repeat.

• In list above, we search for 125 and 127. Gray nodes are looked at;
darker gray nodes are overshoots.

• Heights of the nodes were chosen randomly so that there are about
1/2 as many nodes that are > k high as there are that are k high.

• Makes searches fast with high probability.

Last modified: Thu Nov 1 19:39:39 2018 CS61B: Lecture #31 14



Probabilistic Balancing: Skip Lists

• A skip list can be thought of as a kind of n-ary search tree in which
we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large
segments.

• Typical example:

−∞
0

1

2

3

10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

⇒

• To search, start at top layer on left, search until next step would
overshoot, then go down one layer and repeat.

• In list above, we search for 125 and 127. Gray nodes are looked at;
darker gray nodes are overshoots.

• Heights of the nodes were chosen randomly so that there are about
1/2 as many nodes that are > k high as there are that are k high.

• Makes searches fast with high probability.

Last modified: Thu Nov 1 19:39:39 2018 CS61B: Lecture #31 15



Probabilistic Balancing: Skip Lists

• A skip list can be thought of as a kind of n-ary search tree in which
we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large
segments.

• Typical example:

−∞
0

1

2

3

10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

⇒

• To search, start at top layer on left, search until next step would
overshoot, then go down one layer and repeat.

• In list above, we search for 125 and 127. Gray nodes are looked at;
darker gray nodes are overshoots.

• Heights of the nodes were chosen randomly so that there are about
1/2 as many nodes that are > k high as there are that are k high.

• Makes searches fast with high probability.

Last modified: Thu Nov 1 19:39:39 2018 CS61B: Lecture #31 16



Probabilistic Balancing: Skip Lists

• A skip list can be thought of as a kind of n-ary search tree in which
we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large
segments.

• Typical example:

−∞
0

1

2

3

10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

⇒

• To search, start at top layer on left, search until next step would
overshoot, then go down one layer and repeat.

• In list above, we search for 125 and 127. Gray nodes are looked at;
darker gray nodes are overshoots.

• Heights of the nodes were chosen randomly so that there are about
1/2 as many nodes that are > k high as there are that are k high.

• Makes searches fast with high probability.

Last modified: Thu Nov 1 19:39:39 2018 CS61B: Lecture #31 17



Probabilistic Balancing: Skip Lists

• A skip list can be thought of as a kind of n-ary search tree in which
we choose to put the keys at “random” heights.

• More often thought of as an ordered list in which one can skip large
segments.

• Typical example:

−∞
0

1

2

3

10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

⇓

⇒

• To search, start at top layer on left, search until next step would
overshoot, then go down one layer and repeat.

• In list above, we search for 125 and 127. Gray nodes are looked at;
darker gray nodes are overshoots.

• Heights of the nodes were chosen randomly so that there are about
1/2 as many nodes that are > k high as there are that are k high.

• Makes searches fast with high probability.

Last modified: Thu Nov 1 19:39:39 2018 CS61B: Lecture #31 18



Example: Adding and deleting

• Starting from initial list:

−∞
0

1

2

3

10 20 25 30 40 50 55 60 90 95 100 115 120 125 130 140 150 ∞

• In any order, we add 126 and 127 (choosing random heights for
them), and remove 20 and 40:

−∞
0

1

2

3

10 25 30 50 55 60 90 95 100 115 120 125 126 127 130 140 150 ∞

• Shaded nodes here have been modified.

Last modified: Thu Nov 1 19:39:39 2018 CS61B: Lecture #31 19



Summary

• Balance in search trees allows us to realize Θ(lgN) performance.

• B-trees, red-black trees:

– Give Θ(lgN) performance for searches, insertions, deletions.

– B-trees good for external storage. Large nodes minimize # of
I/O operations

• Tries:

– Give Θ(B) performance for searches, insertions, and deletions,
where B is length of key being processed.

– But hard to manage space efficiently.

• Interesting idea: scrunched arrays share space.

• Skip lists:

– Give probable Θ(lgN) performace for searches, insertions, dele-
tions

– Easy to implement.

– Presented for interesting ideas: probabilistic balance, random-
ized data structures.

Last modified: Thu Nov 1 19:39:39 2018 CS61B: Lecture #31 20



Summary of Collection Abstractions

Multiset
contains, iterator

List
get(n)

Set

Ordered Set
first

Unordered
Set

Priority Queue Sorted Set
subset

Map
contains, iterator

get

Unordered
Map

Ordered
Map

Blue: Java has corresponding interface
Green: Java has no corresponding interface

Last modified: Thu Nov 1 19:39:39 2018 CS61B: Lecture #31 21



Data Structures that Implement Abstractions

Multiset

• List: arrays, linked lists, circular buffers

• Set

– OrderedSet

∗ Priority Queue: heaps

∗ Sorted Set: binary search trees, red-black trees, B-trees,
sorted arrays or linked lists

– Unordered Set: hash table

Map

• Unordered Map: hash table

• Ordered Map: red-black trees, B-trees, sorted arrays or linked lists

Last modified: Thu Nov 1 19:39:39 2018 CS61B: Lecture #31 22



Corresponding Classes in Java

Multiset (Collection)

• List: ArrayList, LinkedList, Stack, ArrayBlockingQueue,
ArrayDeque

• Set

– OrderedSet

∗ Priority Queue: PriorityQueue

∗ Sorted Set (SortedSet): TreeSet

– Unordered Set: HashSet

Map

• Unordered Map: HashMap

• Ordered Map (SortedMap): TreeMap

Last modified: Thu Nov 1 19:39:39 2018 CS61B: Lecture #31 23


	CS61B Lecture #31
	Really Efficient Use of Keys: the Trie
	The Trie: Example
	Adding Item to a Trie
	A Side-Trip: Scrunching
	Scrunching Example
	Practicum
	Probabilistic Balancing: Skip Lists
	Example: Adding and deleting
	Summary
	Summary of Collection Abstractions
	Data Structures that Implement Abstractions
	Corresponding Classes in Java

