
CS61B Lecture #33

Readings: Graph Structures: DSIJ, Chapter 12
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Why Graphs?

expressing non-hierarchically related items

Networks: pipelines, roads, assignment problems

Representing processes: flow charts, Markov models

Representing partial orderings: PERT charts, makefiles
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Some Terminology

consists of

nodes (aka vertices)

edges: pairs of nodes.

with an edge between are adjacent.

Depending on problem, nodes or edges may have labels (or weights)

call node set V = {v0, . . .}, and edge set E.

edges have an order (first, second), they are directed edges,
have a directed graph (digraph), otherwise an undirected

incident to their nodes.

edges exit one node and enter the next.

path without repeated edges leading from a node back
(following arrows if directed).

cyclic if it has a cycle, else acyclic. Abbreviation: Di-
Acyclic Graph—DAG.
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Some Pictures
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Trees are Graphs

connected if there is a (possibly directed) path between
of nodes.

one node of the pair is reachable from the other.

(rooted) tree iff connected, and every node but the root
one parent.

connected, acyclic, undirected graph is also called a free tree.
free to pick the root; e.g.,
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Examples of Use

Connecting road, with length.

Detroit Chicago200

be completed before; Node label = time to complete.

Eat
1 hr

Sleep
8 hrs

Begat

Martin George
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More Examples

relationship

potstickers John Maryeats loves

state might be (with probability)

hat the cat in bed
0.60.4 0.4 0.1

0.9

state in state machine, label is triggering input. (Start
in state 4 means “there is a substring ‘001’ somewhere in

s 2 3 4
0 0 1

0

1
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Representation

useful to number the nodes, and use the numbers in edges.

representation: each node contains some kind of list (e.g.,
array) of its successors (and possibly predecessors).

1: a

(2,3) ()

2: b

(3) (1)

3: c

() (1,2)

Collection of all edges. For graph above:

{(1, 2), (1, 3), (2, 3)}

matrix: Represent connection with matrix entry:
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Traversing a Graph

algorithms on graphs depend on traversing all or some nodes.

use recursion because of cycles.

acyclic graphs, can get combinatorial explosions:
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. . . 3N

the root and do recursive traversal down the two edges
node: Θ(2N) operations!

try to visit each node constant # of times (e.g., once).
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Recursive Depth-First Traversal of a Graph

looping and combinatorial problems using the “bread-crumb”
used in earlier lectures for a maze.

mark nodes as we traverse them and don’t traverse previ-
marked nodes.

sense to talk about preorder and postorder, as for trees.

preorderTraverse(Graph G, Node v)

unmarked) {

(Edge(v, w) ∈ G)

traverse(G, w);

void postorderTraverse(Graph G, Node v)

{

if (v is unmarked) {

mark(v);

for (Edge(v, w) ∈ G)

traverse(G, w);

visit v;

}

}
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Recursive Depth-First Traversal of a Graph (II)

often interested in traversing all nodes of a graph, not just
reachable from one node.

repeat the procedure as long as there are unmarked

preorderTraverse(Graph G) {
(v ∈ nodes of G) {
preorderTraverse(G, v);

postorderTraverse(Graph G) {
(v ∈ nodes of G) {
postorderTraverse(G, v);
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Topological Sorting

Given a DAG, find a linear order of nodes consistent with

order the nodes v0, v1, . . . such that vk is never reachable
′ > k.

this. Also PERT charts.
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Sorting and Depth First Search

: Suppose we reverse the links on our graph.

recursive DFS on the reverse graph, starting from node
example, we will find all nodes that must come before H.

search reaches a node in the reversed graph and there
successors, we know that it is safe to put that node first.

postorder traversal of the reversed graph visits nodes
all predecessors have been visited.

F

G

A

B

C 0

D

E

F 1

G 2

H

Numbers show post-
order traversal order
starting from G: every-
thing that must come
before G.
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General Graph Traversal Algorithm

OF VERTICES fringe;

INITIAL COLLECTION;
(!fringe.isEmpty()) {

fringe.REMOVE HIGHEST PRIORITY ITEM();

MARKED(v)) {

edge(v,w) {

NEEDS PROCESSING(w))

to fringe;

COLLECTION OF VERTICES, INITIAL COLLECTION, etc.
types, expressions, or methods to different graph algo-
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Example: Depth-First Traversal

every node reachable from v once, visiting nodes fur-
start first.

Stack<Vertex> fringe;

stack containing {v};
(!fringe.isEmpty()) {

= fringe.pop();

marked(v)) {
(v);

(v);

each edge(v,w) {
(!marked(w))

fringe.push(w);
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Depth-First Traversal Illustrated
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Topological Sort in Action

fringe
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Shortest Paths: Dijkstra’s Algorithm

Given a graph (directed or undirected) with non-negative
compute shortest paths from given source node, s, to

sum of weights along path is smallest.

node, keep estimated distance from s, . . .

preceding node in shortest path from s.

PriorityQueue<Vertex> fringe;

v { v.dist() = ∞; v.back() = null; }

priority queue ordered by smallest .dist();
to fringe;

(!fringe.isEmpty()) {

fringe.removeFirst();

edge(v,w) {

(v.dist() + weight(v,w) < w.dist())

w.dist() = v.dist() + weight(v,w); w.back() = v; }
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Example
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result:

Shortest-path tree

X|d processed node at distance d

Y|d node in fringe at distance d
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