Why Graphs?

ng non-hierarchically related items

. pipelines, roads, assignment problems
fing processes: flow charts, Markov models
fing partial orderings: PERT charts, makefiles
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Some Pictures
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Examples of Use

xcting road, with length.

200

be completed before; Node label = time to complete.

Sleep
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CS61B Lecture #33

gs: Graph Structures: DSIJ, Chapter 12
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Some Terminology

sists of

1odes (aka vertices)

:dges: pairs of nodes.

*h an edge between are adjacent.

jon problem, nodes or edges may have labels (or weights)

I node set V' = {uvy, ...}, and edge set E.

have an order (first, second), they are directed edges,
. a directed graph (digraph), otherwise an undirected

cident to their nodes.
jes exit one node and enter the next.

path without repeated edges leading from a node back
lowing arrows if directed).

yclic if it has a cycle, else acyclic. Abbreviation: Di-
lic Graph—DAG.
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Trees are Graphs

»nnected if there is a (possibly directed) path between
" nodes.

1e hode of the pair is reachable from the other.

rooted) tree iff connected, and every node but the root
>he parent.

|, acyclic, undirected graph is also called a free tree.
‘ree to pick the root; e.g.,
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Representation

to number the nodes, and use the humbers in edges.

resentation: each node contains some kind of list (e.g.,
array) of its successors (and possibly predecessors).
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ollection of all edges. For graph above:

{(1,2),(1,3), 2,3)}
atrix: Represent connection with matrix entry:
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iive Depth-First Traversal of a Graph

ng and combinatorial problems using the "bread-crumb”
l'in earlier lectures for a maze.

k nodes as we traverse them and don't traverse previ-
1 nodes.

to talk about preorder and postorder, as for trees.

Traverse(Graph G, Node v) void postorderTraverse(Graph G, Node v)
{
nmarked) { if (v is unmarked) {
mark(v) ;
for (Edge(v, w) € G)
e(v, w) € G) traverse(G, w);
se(G, w); visit v;
}
}
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Topological Sorting

1 a DAG, find a linear order of nodes consistent with

:r the nodes vy, vy, ... such that v is never reachable
> k.

this. Also PERT charts.
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More Examples

relationship

@ eats /John\ loves Mary

state might be (with probability)

09

state in state machine, label is triggering input. (Start
state 4 means “there is a substring ‘001’ somewhere in
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Traversing a 6raph

hms on graphs depend on traversing all or some nodes.
se recursion because of cycles.

ic graphs, can get combinatorial explosions:

he root and do recursive traversal down the two edges
10de: ©(2V) operations!

try to visit each node constant # of times (e.g., once).
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¢ Depth-First Traversal of a Graph (IT)

n interested in traversing all nodes of a graph, not just
ible from one node.

'epeat the procedure as long as there are unmarked

yrderTraverse(Graph G) {
1 € nodes of G) {
sorderTraverse(G, v);

;orderTraverse(Graph G) {
1 € nodes of G) {
storderTraverse(G, v);
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eneral 6raph Traversal Algorithm

DF_VERTICES fringe;
[LTAL_COLLECTION;
.isEmpty ()) {
ringe. REMOVE HIGHEST PRIORITY ITEM () ;
D) {
dge (v,w) {

DS_PROCESSING (w))

to fringe;

ECTION_OF_VERTICES, INITIAL_ COLLECTION, etc.
pes, expressions, or methods to different graph algo-
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lepth-First Traversal Illustrated

@
® ® ®
DNO) Q © Q © Q©
d ® @ ® @ ® @ ®
‘al Ib,d] lc,e.d] [d,£,e,d]
a @ @ @
b ® ® ®
Q © Q® Q® Q®
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ortest Paths: Dijkstra's Algorithm

1 a graph (directed or undirected) with non-negative
ompute shortest paths from given source node, s, to

sum of weights along path is smallest.
le, keep estimated distance froms, ...
:ceding node in shortest path from s.
Wertex> fringe;

v { v.dist() = oo; v.back() = null; }

ity queue ordered by smallest .dist();
to fringe;

2 isEmpty O)) {
iringe.removeFirst();

re(v,w) {

;) + weight(v,w) < w.dist())
;) = v.dist() + weight(v,w); w.back() = v; }
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Sorting and Depth First Search

Suppose we reverse the links on our graph.

ecursive DFS on the reverse graph, starting from node
le, we will find all nodes that must come before H.
tarch reaches a node in the reversed graph and there
ssors, we know that it is safe to put that node first.

postorder traversal of the reversed graph visits nodes
predecessors have been visited.

@ © o

B © ®1

Numbers show post-
® @ 2 order traversal order
starting from G: every-

® thing that must come
before 6.
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Example: Depth-First Traversal

every node reachable from v once, visiting nodes fur-
first.

x> fringe;

1ck containing {v};
age.isEmpty ()) {
= fringe.pop();

ed()) {

s

1 edge(v,w) {
narked(w))
1ge.push(w) ;
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Topological Sort in Action
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Example

-----= Shortest-path tree
@ processed node at distance d

@ node in fringe at distance d
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