
Lecture #35

programming and memoization.

Git.

11:52:57 2018 CS61B: Lecture #35 1

Dynamic Programming

Garcia):

with a list with an even number of non-negative integers.

player in turn takes either the leftmost number or the
rightmost.

get the largest possible sum.

starting with (6, 12, 0, 8), you (as first player) should take
Whatever the second player takes, you also get the 12, for a

your opponent plays perfectly (i.e., to get as much as pos-
can you maximize your sum?

this with exhaustive game-tree search.

11:52:57 2018 CS61B: Lecture #35 2

Obvious Program

makes it easy, again:

bestSum(int[] V) {

total, i, N = V.length;

0, total = 0; i < N; i += 1) total += V[i];

bestSum(V, 0, N-1, total);

largest sum obtainable by the first player in the choosing

on the list V[LEFT .. RIGHT], assuming that TOTAL is the

all the elements in V[LEFT .. RIGHT]. */

bestSum(int[] V, int left, int right, int total) {

> right)

0;

= total - bestSum(V, left+1, right, total-V[left]);

= total - bestSum(V, left, right-1, total-V[right]);

Math.max(L, R);

C(0) = 1, C(N) = 2C(N − 1); so C(N) ∈ Θ(2N)

11:52:57 2018 CS61B: Lecture #35 3

Still Another Idea from CS61A

problem is that we are recomputing intermediate results many

memoize the intermediate results. Here, we pass in an
array (N = V.length) of memoized results, initialized to -1.

bestSum(int[] V, int left, int right, int total, int[][] memo) {

> right)

0;

(memo[left][right] == -1) {

= total - bestSum(V, left+1, right, total-V[left], memo);

= total - bestSum(V, left, right-1, total-V[right], memo);

memo[left][right] = Math.max(L, R);

memo[left][right];

number of recursive calls to bestSum must be O(N 2), for
length of V , an enormous improvement from Θ(2N)!

11:52:57 2018 CS61B: Lecture #35 4

Iterative Version

the recursive version, but the usual presentation of this
as dynamic programming—is iterative:

bestSum(int[] V) {

memo = new int[V.length][V.length];

total = new int[V.length][V.length];

i = 0; i < V.length; i += 1)

memo[i][i] = total[i][i] = V[i];

k = 1; k < V.length; k += 1)

int i = 0; i < V.length-k-1; i += 1) {

total[i][i+k] = V[i] + total[i+1][i+k];

L = total[i][i+k] - memo[i+1][i+k];

R = total[i][i+k] - memo[i][i+k-1];

memo[i][i+k] = Math.max(L, R);

memo[0][V.length-1];

figure out ahead of time the order in which the memo-
will fill in memo, and write an explicit loop.

time needed to check whether result exists.

why bother unless it’s necessary to save space?
11:52:57 2018 CS61B: Lecture #35 5

Longest Common Subsequence

Find length of the longest string that is a subsequence of
other strings.

Longest common subsequence of
sally sells sea shells by the seashore” and
sarah sold salt sellers at the salt mines”

sa sl sa sells the sae” (length 23)

testing, for example.

recursive algorithm:

of longest common subsequence of S0[0..k0-1]

S1[0..k1-1] (pseudo Java) */

lls(String S0, int k0, String S1, int k1) {

== 0 || k1 == 0) return 0;

(S0[k0-1] == S1[k1-1]) return 1 + lls(S0, k0-1, S1, k1-1);

return Math.max(lls(S0, k0-1, S1, k1), lls(S0, k0, S1, k1-1);

but obviously memoizable.

11:52:57 2018 CS61B: Lecture #35 6

Memoized Longest Common Subsequence

longest common subsequence of S0[0..k0-1]

S1[0..k1-1] (pseudo Java) */

String S0, int k0, String S1, int k1) {

new int[k0+1][k1+1];

: memo) Arrays.fill(row, -1);

k0, S1, k1, memo);

int lls(String S0, int k0, String S1, int k1, int[][] memo) {

k1 == 0) return 0;

(memo[k0][k1] == -1) {

== S1[k1-1])

memo[k0][k1] = 1 + lls(S0, k0-1, S1, k1-1, memo);

memo[k0][k1] = Math.max(lls(S0, k0-1, S1, k1, memo),

lls(S0, k0, S1, k1-1, memo));

memo[k0][k1];

will the memoized version be?

11:52:57 2018 CS61B: Lecture #35 7

Memoized Longest Common Subsequence

longest common subsequence of S0[0..k0-1]

S1[0..k1-1] (pseudo Java) */

String S0, int k0, String S1, int k1) {

new int[k0+1][k1+1];

: memo) Arrays.fill(row, -1);

k0, S1, k1, memo);

int lls(String S0, int k0, String S1, int k1, int[][] memo) {

k1 == 0) return 0;

(memo[k0][k1] == -1) {

== S1[k1-1])

memo[k0][k1] = 1 + lls(S0, k0-1, S1, k1-1, memo);

memo[k0][k1] = Math.max(lls(S0, k0-1, S1, k1, memo),

lls(S0, k0, S1, k1-1, memo));

memo[k0][k1];

will the memoized version be? Θ(k0 · k1)

11:52:57 2018 CS61B: Lecture #35 8

Case Study in System and Data-Structure
Design

distributed version-control system, apparently the most pop-
these currently.

Conceptually, it stores snapshots (versions) of the files and direc-
structure of a project, keeping track of their relationships,

dates, and log messages.

distributed, in that there can be many copies of a given repos-
supporting indepenent development, with machinery to

and reconcile versions between repositories.

operation is extremely fast (as these things go).

11:52:57 2018 CS61B: Lecture #35 9

A Little History

by Linus Torvalds and others in the Linux community when
developer of their previous, propietary VCS (Bitkeeper) with-

free version.

implementation effort seems to have taken about 2–3 months,
the 2.6.12 Linux kernel release in June, 2005.

name, according to Wikipedia,

Torvalds has quipped about the name Git, which is British
slang meaning “unpleasant person”. Torvalds said: “I’m

egotistical bastard, and I name all my projects after myself.
’Linux’, now ’git’.” The man page describes Git as “the
content tracker.”

was a collection of basic primitives (now called “plumbing”)
be scripted to provide desired functionality.

higher-level commands (“porcelain”) built on top of these to
convenient user interface.

11:52:57 2018 CS61B: Lecture #35 10

Major User-Level Features (I)

is of a graph of versions or snapshots (called commits)
complete project.

structure reflects ancestory: which versions came from

commit contains

directory tree of files (like a Unix directory).

Information about who committed and when.

message.

to commit (or commits, if there was a merge) from which
commit was derived.

11:52:57 2018 CS61B: Lecture #35 11

Conceptual Structure

internal components consist of four types of object:

basically hold contents of files.

directory structures of files.

Contain references to trees and additional information
(committer, date, log message).

References to commits or other objects, with additional
information, intended to identify releases, other important ver-

various useful information. (Won’t mention further to-

11:52:57 2018 CS61B: Lecture #35 12

Commits, Trees, Files

Version Version
2

Version
3

F1

F

G1

G D

F2

F

G1

G

H1

H

I1

I

D

F2

F

G1

G

H1

H

Commits
Trees

Blobs (files)

Dashed lines link objects
that are the same

11:52:57 2018 CS61B: Lecture #35 13

Version Histories in Two Repositories

V1

V2

V3

V4

V8

V9

Repository 2

V1

V2

V3

V4

V8

V9V5

V6

Repository 2
after pushing V6 to it

11:52:57 2018 CS61B: Lecture #35 14

Major User-Level Features (II)

commit has a name that uniquely identifies it to all versions.

can transmit collections of versions to each other.

Transmitting a commit from repository A to repository B requires
transmission of those objects (files or directory trees)

not yet have (allowing speedy updating of repositories).

maintain named branches, which are simply identifiers
particular commits that are updated to keep track of the most

commits in various lines of development.

tags are essentially named pointers to particular commits.
branches in that they are not usually changed.

11:52:57 2018 CS61B: Lecture #35 15

Internals

repository is contained in a directory.

may either be bare (just a collection of objects and
or may be included as part of a working directory.

the repository is stored in various objects correspond-
(or other “leaf” content), trees, and commits.

space, data in files is compressed.

garbage-collect the objects from time to time to save addi-

11:52:57 2018 CS61B: Lecture #35 16

The Pointer Problem

Git are files. How should we represent pointers between

able to transmit objects from one repository to another
different contents. How do you transmit the pointers?

to transfer those objects that are missing in the target
How do we know which those are?

counter in each repository to give each object there a
name. But how can that work consistently for two indepen-

repositories?

11:52:57 2018 CS61B: Lecture #35 17

Content-Addressable File System

some way of naming objects that is universal.

names, then, as pointers.

“Which objects don’t you have?” problem in an obvious

Conceptually, what is invariant about an object, regardless of repos-
contents.

use the contents as the name for obvious reasons.

hash of the contents as the address.

That doesn’t work!

Idea: Use it anyway!!

11:52:57 2018 CS61B: Lecture #35 18

How A Broken Idea Can Work

to use a hash function that is so unlikely to have a colli-
can ignore that possibility.

Cryptographic Hash Functions have relevant property.

function, f , is designed to withstand cryptoanalytic attacks.
particular, should have

Pre-image resistance: given h = f(m), should be computationally
infeasible to find such a message m.

pre-image resistance: given message m1, should be infea-
find m2 6= m1 such that f(m1) = f(m2).

resistance: should be difficult to find any two messages
such that f(m1) = f(m2).

properties, scheme of using hash of contents as name is
unlikely to fail, even when system is used maliciously.

11:52:57 2018 CS61B: Lecture #35 19

SHA1

SHA1 (Secure Hash Function 1).

around with this using the hashlib module in Python3.

names in Git are therefore 160-bit hash codes of con-
hex.

commit in the shared CS61B repository could be fetched
with

checkout e59849201956766218a3ad6ee1c3aab37dfec3fe

11:52:57 2018 CS61B: Lecture #35 20

	Lecture #35
	Dynamic Programming
	Obvious Program
	Still Another Idea from CS61A
	Iterative Version
	Longest Common Subsequence
	Memoized Longest Common Subsequence
	Git: A Case Study in System and Data-Structure Design
	A Little History
	Major User-Level Features (I)
	Conceptual Structure
	Commits, Trees, Files
	Version Histories in Two Repositories
	Major User-Level Features (II)
	Internals
	The Pointer Problem
	Content-Addressable File System
	How A Broken Idea Can Work
	SHA1

