
Lecture #35

Today

• Dynamic programming and memoization.

• Anatomy of Git.

Last modified: Wed Nov 14 11:52:57 2018 CS61B: Lecture #35 1

Dynamic Programming

• A puzzle (D. Garcia):

– Start with a list with an even number of non-negative integers.

– Each player in turn takes either the leftmost number or the
rightmost.

– Idea is to get the largest possible sum.

• Example: starting with (6, 12, 0, 8), you (as first player) should take
the 8. Whatever the second player takes, you also get the 12, for a
total of 20.

• Assuming your opponent plays perfectly (i.e., to get as much as pos-
sible), how can you maximize your sum?

• Can solve this with exhaustive game-tree search.

Last modified: Wed Nov 14 11:52:57 2018 CS61B: Lecture #35 2

Obvious Program

• Recursion makes it easy, again:

int bestSum(int[] V) {

int total, i, N = V.length;

for (i = 0, total = 0; i < N; i += 1) total += V[i];

return bestSum(V, 0, N-1, total);

}

/** The largest sum obtainable by the first player in the choosing

* game on the list V[LEFT .. RIGHT], assuming that TOTAL is the

* sum of all the elements in V[LEFT .. RIGHT]. */

int bestSum(int[] V, int left, int right, int total) {

if (left > right)

return 0;

else {

int L = total - bestSum(V, left+1, right, total-V[left]);

int R = total - bestSum(V, left, right-1, total-V[right]);

return Math.max(L, R);

}

}

• Time cost is C(0) = 1, C(N) = 2C(N − 1); so C(N) ∈ Θ(2N)

Last modified: Wed Nov 14 11:52:57 2018 CS61B: Lecture #35 3

Still Another Idea from CS61A

• The problem is that we are recomputing intermediate results many
times.

• Solution: memoize the intermediate results. Here, we pass in an
N ×N array (N = V.length) of memoized results, initialized to -1.

int bestSum(int[] V, int left, int right, int total, int[][] memo) {

if (left > right)

return 0;

else if (memo[left][right] == -1) {

int L = total - bestSum(V, left+1, right, total-V[left], memo);

int R = total - bestSum(V, left, right-1, total-V[right], memo);

memo[left][right] = Math.max(L, R);

}

return memo[left][right];

}

}

• Now the number of recursive calls to bestSum must be O(N 2), for
N = the length of V , an enormous improvement from Θ(2N)!

Last modified: Wed Nov 14 11:52:57 2018 CS61B: Lecture #35 4

Iterative Version

• I prefer the recursive version, but the usual presentation of this
idea—known as dynamic programming—is iterative:

int bestSum(int[] V) {

int[][] memo = new int[V.length][V.length];

int[][] total = new int[V.length][V.length];

for (int i = 0; i < V.length; i += 1)

memo[i][i] = total[i][i] = V[i];

for (int k = 1; k < V.length; k += 1)

for (int i = 0; i < V.length-k-1; i += 1) {

total[i][i+k] = V[i] + total[i+1][i+k];

int L = total[i][i+k] - memo[i+1][i+k];

int R = total[i][i+k] - memo[i][i+k-1];

memo[i][i+k] = Math.max(L, R);

}

return memo[0][V.length-1];

}

• That is, we figure out ahead of time the order in which the memo-
ized version will fill in memo, and write an explicit loop.

• Save the time needed to check whether result exists.

• But I say, why bother unless it’s necessary to save space?
Last modified: Wed Nov 14 11:52:57 2018 CS61B: Lecture #35 5

Longest Common Subsequence

• Problem: Find length of the longest string that is a subsequence of
each of two other strings.

• Example: Longest common subsequence of
“sally sells sea shells by the seashore” and
“sarah sold salt sellers at the salt mines”

is
“sa sl sa sells the sae” (length 23)

• Similarity testing, for example.

• Obvious recursive algorithm:

/** Length of longest common subsequence of S0[0..k0-1]

* and S1[0..k1-1] (pseudo Java) */

static int lls(String S0, int k0, String S1, int k1) {

if (k0 == 0 || k1 == 0) return 0;

if (S0[k0-1] == S1[k1-1]) return 1 + lls(S0, k0-1, S1, k1-1);

else return Math.max(lls(S0, k0-1, S1, k1), lls(S0, k0, S1, k1-1);

}

• Exponential, but obviously memoizable.

Last modified: Wed Nov 14 11:52:57 2018 CS61B: Lecture #35 6

Memoized Longest Common Subsequence

/** Length of longest common subsequence of S0[0..k0-1]

* and S1[0..k1-1] (pseudo Java) */

static int lls(String S0, int k0, String S1, int k1) {

int[][] memo = new int[k0+1][k1+1];

for (int[] row : memo) Arrays.fill(row, -1);

return lls(S0, k0, S1, k1, memo);

}

private static int lls(String S0, int k0, String S1, int k1, int[][] memo) {

if (k0 == 0 || k1 == 0) return 0;

if (memo[k0][k1] == -1) {

if (S0[k0-1] == S1[k1-1])

memo[k0][k1] = 1 + lls(S0, k0-1, S1, k1-1, memo);

else

memo[k0][k1] = Math.max(lls(S0, k0-1, S1, k1, memo),

lls(S0, k0, S1, k1-1, memo));

}

return memo[k0][k1];

}

Q: How fast will the memoized version be?

Last modified: Wed Nov 14 11:52:57 2018 CS61B: Lecture #35 7

Memoized Longest Common Subsequence

/** Length of longest common subsequence of S0[0..k0-1]

* and S1[0..k1-1] (pseudo Java) */

static int lls(String S0, int k0, String S1, int k1) {

int[][] memo = new int[k0+1][k1+1];

for (int[] row : memo) Arrays.fill(row, -1);

return lls(S0, k0, S1, k1, memo);

}

private static int lls(String S0, int k0, String S1, int k1, int[][] memo) {

if (k0 == 0 || k1 == 0) return 0;

if (memo[k0][k1] == -1) {

if (S0[k0-1] == S1[k1-1])

memo[k0][k1] = 1 + lls(S0, k0-1, S1, k1-1, memo);

else

memo[k0][k1] = Math.max(lls(S0, k0-1, S1, k1, memo),

lls(S0, k0, S1, k1-1, memo));

}

return memo[k0][k1];

}

Q: How fast will the memoized version be? Θ(k0 · k1)

Last modified: Wed Nov 14 11:52:57 2018 CS61B: Lecture #35 8

Git: A Case Study in System and Data-Structure
Design

• Git is a distributed version-control system, apparently the most pop-
ular of these currently.

• Conceptually, it stores snapshots (versions) of the files and direc-
tory structure of a project, keeping track of their relationships,
authors, dates, and log messages.

• It is distributed, in that there can be many copies of a given repos-
itory, each supporting indepenent development, with machinery to
transmit and reconcile versions between repositories.

• Its operation is extremely fast (as these things go).

Last modified: Wed Nov 14 11:52:57 2018 CS61B: Lecture #35 9

A Little History

• Developed by Linus Torvalds and others in the Linux community when
the developer of their previous, propietary VCS (Bitkeeper) with-
drew the free version.

• Initial implementation effort seems to have taken about 2–3 months,
in time for the 2.6.12 Linux kernel release in June, 2005.

• As for the name, according to Wikipedia,

Torvalds has quipped about the name Git, which is British
English slang meaning “unpleasant person”. Torvalds said: “I’m
an egotistical bastard, and I name all my projects after myself.
First ’Linux’, now ’git’.” The man page describes Git as “the
stupid content tracker.”

• Initially, was a collection of basic primitives (now called “plumbing”)
that could be scripted to provide desired functionality.

• Then, higher-level commands (“porcelain”) built on top of these to
provide a convenient user interface.

Last modified: Wed Nov 14 11:52:57 2018 CS61B: Lecture #35 10

Major User-Level Features (I)

• Abstraction is of a graph of versions or snapshots (called commits)
of a complete project.

• The graph structure reflects ancestory: which versions came from
which.

• Each commit contains

– A directory tree of files (like a Unix directory).

– Information about who committed and when.

– Log message.

– Pointers to commit (or commits, if there was a merge) from which
the commit was derived.

Last modified: Wed Nov 14 11:52:57 2018 CS61B: Lecture #35 11

Conceptual Structure

• Main internal components consist of four types of object:

– Blobs: basically hold contents of files.

– Trees: directory structures of files.

– Commits: Contain references to trees and additional information
(committer, date, log message).

– Tags: References to commits or other objects, with additional
information, intended to identify releases, other important ver-
sions, or various useful information. (Won’t mention further to-
day).

Last modified: Wed Nov 14 11:52:57 2018 CS61B: Lecture #35 12

Commits, Trees, Files

Version
1

Version
2

Version
3

D

F1

F

G1

G

H1

H

I1

I

D

F2

F

G1

G

H1

H

I1

I

D

F2

F

G1

G

H1

H

Commits
Trees

Blobs (files)

Dashed lines link objects
that are the same

Last modified: Wed Nov 14 11:52:57 2018 CS61B: Lecture #35 13

Version Histories in Two Repositories

V1

V2

V3

V4

V5

V6

V7

Repository 1

V1

V2

V3

V4

V8

V9

Repository 2

V1

V2

V3

V4

V8

V9V5

V6

Repository 2
after pushing V6 to it

Last modified: Wed Nov 14 11:52:57 2018 CS61B: Lecture #35 14

Major User-Level Features (II)

• Each commit has a name that uniquely identifies it to all versions.

• Repositories can transmit collections of versions to each other.

• Transmitting a commit from repository A to repository B requires
only the transmission of those objects (files or directory trees)
that B does not yet have (allowing speedy updating of repositories).

• Repositories maintain named branches, which are simply identifiers
of particular commits that are updated to keep track of the most
recent commits in various lines of development.

• Likewise, tags are essentially named pointers to particular commits.
Differ from branches in that they are not usually changed.

Last modified: Wed Nov 14 11:52:57 2018 CS61B: Lecture #35 15

Internals

• Each Git repository is contained in a directory.

• Repository may either be bare (just a collection of objects and
metadata), or may be included as part of a working directory.

• The data of the repository is stored in various objects correspond-
ing to files (or other “leaf” content), trees, and commits.

• To save space, data in files is compressed.

• Git can garbage-collect the objects from time to time to save addi-
tional space.

Last modified: Wed Nov 14 11:52:57 2018 CS61B: Lecture #35 16

The Pointer Problem

• Objects in Git are files. How should we represent pointers between
them?

• Want to be able to transmit objects from one repository to another
with different contents. How do you transmit the pointers?

• Only want to transfer those objects that are missing in the target
repository. How do we know which those are?

• Could use a counter in each repository to give each object there a
unique name. But how can that work consistently for two indepen-
dent repositories?

Last modified: Wed Nov 14 11:52:57 2018 CS61B: Lecture #35 17

Content-Addressable File System

• Could use some way of naming objects that is universal.

• We use the names, then, as pointers.

• Solves the “Which objects don’t you have?” problem in an obvious
way.

• Conceptually, what is invariant about an object, regardless of repos-
itory, is its contents.

• But can’t use the contents as the name for obvious reasons.

• Idea: Use a hash of the contents as the address.

• Problem: That doesn’t work!

• Brilliant Idea: Use it anyway!!

Last modified: Wed Nov 14 11:52:57 2018 CS61B: Lecture #35 18

How A Broken Idea Can Work

• The idea is to use a hash function that is so unlikely to have a colli-
sion that we can ignore that possibility.

• Cryptographic Hash Functions have relevant property.

• Such a function, f , is designed to withstand cryptoanalytic attacks.
In particular, should have

– Pre-image resistance: given h = f(m), should be computationally
infeasible to find such a message m.

– Second pre-image resistance: given message m1, should be infea-
sible to find m2 6= m1 such that f(m1) = f(m2).

– Collision resistance: should be difficult to find any two messages
m1 6= m2 such that f(m1) = f(m2).

• With these properties, scheme of using hash of contents as name is
extremely unlikely to fail, even when system is used maliciously.

Last modified: Wed Nov 14 11:52:57 2018 CS61B: Lecture #35 19

SHA1

• Git uses SHA1 (Secure Hash Function 1).

• Can play around with this using the hashlib module in Python3.

• All object names in Git are therefore 160-bit hash codes of con-
tents, in hex.

• E.g. a recent commit in the shared CS61B repository could be fetched
(if needed) with

git checkout e59849201956766218a3ad6ee1c3aab37dfec3fe

Last modified: Wed Nov 14 11:52:57 2018 CS61B: Lecture #35 20

	Lecture #35
	Dynamic Programming
	Obvious Program
	Still Another Idea from CS61A
	Iterative Version
	Longest Common Subsequence
	Memoized Longest Common Subsequence
	Git: A Case Study in System and Data-Structure Design
	A Little History
	Major User-Level Features (I)
	Conceptual Structure
	Commits, Trees, Files
	Version Histories in Two Repositories
	Major User-Level Features (II)
	Internals
	The Pointer Problem
	Content-Addressable File System
	How A Broken Idea Can Work
	SHA1

