
CS61B Lecture #36

Side Trip: Enumeration types.

Chapter 10, HFJ, pp. 489–516.

Communication between threads

Synchronization

Mailboxes

01:28:46 2017 CS61B: Lecture #36 1

Trip into Java: Enumeration Types

Need a type to represent something that has a few, named,
values.

purest form, the only necessary operations are == and !=;
property of a value of the type is that it differs from all

versions of Java, used named integer constants:

Pieces {

BLACK PIECE = 0, // Fields in interfaces are static final.

BLACK KING = 1,

WHITE PIECE = 2,

WHITE KING = 3,

EMPTY = 4;

provide enumeration types as a shorthand, with syntax like

{ BLACK PIECE, BLACK KING, WHITE PIECE, WHITE KING, EMPTY };

these values are basically ints, accidents can happen.

01:28:46 2017 CS61B: Lecture #36 2

Enum Types in Java

of Java allows syntax like that of C or C++, but with
guarantees:

enum Piece {

PIECE, BLACK KING, WHITE PIECE, WHITE KING, EMPTY

Piece as a new reference type, a special kind of class type.

BLACK PIECE, etc., are static, final enumeration constants
enumerals) of type PIECE.

automatically initialized, and are the only values of the
type that exist (illegal to use new to create an enum

use ==, and also switch statements:

isKing(Piece p) {

(p) {

BLACK KING: case WHITE KING: return true;

default: return false;

01:28:46 2017 CS61B: Lecture #36 3

Making Enumerals Available Elsewhere

like BLACK PIECE are static members of a class, not classes.

unlike C or C++, their declarations are not automatically
outside the enumeration class definition.

classes, must write Piece.BLACK_PIECE, which can get

with version 1.5, Java has static imports: to import all
definitions of class checkers.Piece (including enumerals), you

static checkers.Piece.*;

import clauses.

use this for enum classes in the anonymous package.

01:28:46 2017 CS61B: Lecture #36 4

Operations on Enum Types

declaration of enumeration constants significant: .ordinal()
position (numbering from 0) of an enumeration value. Thus,

Piece.BLACK KING.ordinal() is 1.

Piece.values() gives all the possible values of the type.
can write:

p : Piece.values())

System.out.printf("Piece value #%d is %s%n", p.ordinal(), p);

function Piece.valueOf converts a String into a value of
So Piece.valueOf("EMPTY") == EMPTY.

01:28:46 2017 CS61B: Lecture #36 5

Fancy Enum Types

classes. You can define all the extra fields, methods, and
constructors you want.

Constructors are used only in creating enumeration constants. The
arguments follow the constant name:

{

PIECE(BLACK, false, "b"), BLACK KING(BLACK, true, "B"),

PIECE(WHITE, false, "w"), WHITE KING(WHITE, true, "W"),

EMPTY(null, false, " ");

final Side color;

final boolean isKing;

final String textName;

Side color, boolean isKing, String textName) {

.color = color; this.isKing = isKing; this.textName = textName;

color() { return color; }

isKing() { return isKing; }

textName() { return textName; }

01:28:46 2017 CS61B: Lecture #36 6



Threads

our programs consist of single sequence of instructions.

sequence is called a thread (for “thread of control”) in

supports programs containing multiple threads, which (concep-
concurrently.

a uniprocessor, only one thread at a time actually runs,
wait, but this is largely invisible.

program access to threads, Java provides the type Thread

java.lang. Each Thread contains information about, and controls,

Simultaneous access to data from two threads can cause chaos, so
constructs for controlled communication, allowing threads
objects, to wait to be notified of events, and to interrupt

threads.

01:28:46 2017 CS61B: Lecture #36 7

But Why?

Java programs always have > 1 thread: besides the main
others clean up garbage objects, receive signals, update

other stuff.

programs deal with asynchronous events, is sometimes conve-
organize into subprograms, one for each independent, re-

sequence of events.

allow us to insulate one such subprogram from another.

organized like this: application is doing some compu-
I/O, another thread waits for mouse clicks (like ‘Stop’),

pays attention to updating the screen as needed.

servers like search engines may be organized this way, with
per request.

course, sometimes we do have a real multiprocessor.

01:28:46 2017 CS61B: Lecture #36 8

Java Mechanics

the actions “walking” and “chewing gum”:

Chewer1 implements Runnable {

void run()

(true) ChewGum(); }

Walker1 implements Runnable {

void run()

(true) Walk(); }

// Walk and chew gum

Thread chomp

= new Thread(new

Chewer1());

Thread clomp

= new Thread(new

Walker1());

chomp.start(); clomp.start();

Alternative (uses fact that Thread implements Runnable):

extends Thread {

void run()

(true) ChewGum(); }

extends Thread {

void run()

(true) Walk(); }

Thread chomp = new Chewer2(),

clomp = new Walker2();

chomp.start();

clomp.start();

01:28:46 2017 CS61B: Lecture #36 9

Avoiding Interference

thread has data for another, one must wait for the other

two threads use the same data structure, generally only
modify it at a time; other must wait.

would happen if two threads simultaneously inserted an
linked list at the same point in the list?

could conceivably execute

new ListCell(x, p.next);

same values of p and p.next; one insertion is lost.

for only one thread at a time to execute a method on a
object with either of the following equivalent definitions:

(...) {

synchronized (this) {

of f

synchronized void f(...) {

body of f
}

01:28:46 2017 CS61B: Lecture #36 10

Communicating the Hard Way

Communicating data is tricky: the faster party must wait for the

approaches for sending data from thread to thread don’t

DataExchanger {

value = null;

receive() {

r; r = null;

(r == null)

= value; }

= null;

r;

deposit(Object data) {

(value != null) { }

= data;

DataExchanger exchanger

= new DataExchanger();

--------------------------------

// thread1 sends to thread2 with

exchanger.deposit("Hello!");

--------------------------------

// thread2 receives from thread1 with

msg = (String) exchanger.receive();

thread can monopolize machine while waiting; two threads
deposit or receive simultaneously cause chaos.
01:28:46 2017 CS61B: Lecture #36 11

Primitive Java Facilities

method on Object makes thread wait (not using processor) un-
by notifyAll, unlocking the Object while it waits.

ucb.util.mailbox has something like this (simplified):

Mailbox {

deposit(Object msg) throws InterruptedException;

receive() throws InterruptedException;

QueuedMailbox implements Mailbox {

List<Object> queue = new LinkedList<Object>();

synchronized void deposit(Object msg) {

queue.add(msg);

.notifyAll(); // Wake any waiting receivers

synchronized Object receive() throws InterruptedException {

(queue.isEmpty()) wait();

queue.remove(0);

01:28:46 2017 CS61B: Lecture #36 12



Message-Passing Style

primitives very error-prone. Wait until CS162.

are higher-level, and allow the following program struc-

Mailbox
#1

Mailbox
#2

Player
#1

Player
#2

deposit

receive deposit

receive

information flow through Mailbox #1

information flow through Mailbox #2

Player is a thread that looks like this:

gameOver()) {

(myMove())

outBox.deposit(computeMyMove(lastMove));

lastMove = inBox.receive();

01:28:46 2017 CS61B: Lecture #36 13

More Concurrency

example can be done other ways, but mechanism is very

suppose you want to think during opponent’s move:

(!gameOver()) {

(myMove())

outBox.deposit(computeMyMove(lastMove));

thinkAheadALittle();

lastMove = inBox.receiveIfPossible();

while (lastMove == null);

receiveIfPossible (written receive(0) in our actual package) doesn’t
returns null if no message yet, perhaps like this:

synchronized Object receiveIfPossible()

InterruptedException {

(queue.isEmpty())

null;

queue.remove(0);

01:28:46 2017 CS61B: Lecture #36 14

Coroutines

is a kind of synchronous thread that explicitly hands
to other coroutines so that only one executes at a time,
generators. Can get similar effect with threads and

recursive inorder tree iterator:

TreeIterator extends Thread {

Mailbox r;

Tree T, Mailbox r) {

T; this.dest = r;

run() {

traverse(root);

End marker);

Tree t) {

null) return;

traverse(t.left);

r.deposit(t.label);

traverse(t.right);

void treeProcessor(Tree T) {

Mailbox m = new QueuedMailbox();

new TreeIterator(T, m).start();

while (true) {

Object x = m.receive();

if (x is end marker)
break;

do something with x;

}

}

01:28:46 2017 CS61B: Lecture #36 15

Use In GUIs

runtime library uses a special thread that does nothing but
events like mouse clicks, pressed keys, mouse movement,

designate an object of your choice as a listener; which
Java’s event thread calls a method of that object when-

event occurs.

your program can do work while the GUI continues to
buttons, menus, etc.

special thread does all the drawing. You don’t have to be
this takes place; just ask that the thread wake up when-

change something.

01:28:46 2017 CS61B: Lecture #36 16

Highlights of a GUI Component

that draws multi-colored lines indicated by mouse. */

extends JComponent implements MouseListener {

List<Point> lines = new ArrayList<Point>();

// Main thread calls this to create one

setPreferredSize(new Dimension(400, 400));

addMouseListener(this);

synchronized void paintComponent(Graphics g) { // Paint thread

g.setColor(Color.white); g.fillRect(0, 0, 400, 400);

x = y = 200;

Color.black;

Point p : lines)

g.setColor(c); c = chooseNextColor(c);

g.drawLine(x, y, p.x, p.y); x = p.x; y = p.y;

synchronized void mouseClicked(MouseEvent e) // Event thread

lines.add(new Point(e.getX(), e.getY())); repaint(); }

01:28:46 2017 CS61B: Lecture #36 17

Interrupts

interrupt is an event that disrupts the normal flow of control of

systems, interrupts can be totally asynchronous, occurring
points in a program, the Java developers considered
arranged that interrupts would occur only at controlled

programs, one thread can interrupt another to inform it
something unusual needs attention:

otherThread.interrupt();

otherThread does not receive the interrupt until it waits: meth-
sleep (wait for a period of time), join (wait for thread to
and mailbox deposit and receive.

causes these methods to throw InterruptedException,
use is like this:

inBox.receive();

InterruptedException e) { HandleEmergency(); }

01:28:46 2017 CS61B: Lecture #36 18



Remote Mailboxes (A Side Excursion)

Remote Method Interface allows one program to refer to ob-
another program.

to allow mailboxes in one program be received from or
into in another.

you define an interface to the remote object:

java.rmi.*;

Mailbox extends Remote {

deposit(Object msg)

InterruptedException, RemoteException;

receive()

InterruptedException, RemoteException;

that actually will contain the object, you define

QueuedMailbox ... implements Mailbox {

implementation as before, roughly

01:28:46 2017 CS61B: Lecture #36 19

Remote Objects Under the Hood

#1: // On Machine #2:

outBox Mailbox inBox

QueuedMailbox(); = get outBox from machine #1

a
QueuedMailbox
queue: [’Hi’,...]

a
Mailbox
stub

inBox:

receive()

receive() request (I/O)

response ’Hi’ (I/O)

Mailbox is an interface, hides fact that on Machine #2
actually have direct access to it.

for method calls are relayed by I/O to machine that has

argument or return type OK if it also implements Remote or
serialized—turned into stream of bytes and back, as can
types and String.

involved, expect failures, hence every method can throw
RemoteException (subtype of IOException).

01:28:46 2017 CS61B: Lecture #36 20


	CS61B Lecture #36
	Side Trip into Java: Enumeration Types
	Enum Types in Java
	Making Enumerals Available Elsewhere
	Operations on Enum Types
	Fancy Enum Types
	Threads
	But Why?
	Java Mechanics
	Avoiding Interference
	Communicating the Hard Way
	Primitive Java Facilities
	Message-Passing Style
	More Concurrency
	Coroutines
	Use In GUIs
	Highlights of a GUI Component
	Interrupts
	Remote Mailboxes (A Side Excursion)
	Remote Objects Under the Hood

