
Lecture #37

little side excursion into nitty-gritty stuff: Storage man-

13:26:19 2018 CS61B: Lecture #37 1

Scope and Lifetime

declaration is portion of program text to which it applies

be contiguous.

is static: independent of data.

extent of storage is portion of program execution dur-
exists.

contiguous

dynamic: depends on data

extent:

entire duration of program

automatic: duration of call or block execution (local vari-

From time of allocation statement (new) to dealloca-
any.

13:26:19 2018 CS61B: Lecture #37 2

Explicit vs. Automatic Freeing

explicit means to free dynamic storage.

when no expression in any thread can possibly be influ-
change an object, it might as well not exist:

wasteful()

c = new IntList(3, new IntList(4, null));

c.tail;

variable c now deallocated, so no way

get to first cell of list

point, Java runtime, like Scheme’s, recycles the object c

garbage collection.

13:26:19 2018 CS61B: Lecture #37 3

Under the Hood: Allocation

pointers (references) are represented as integer addresses.

to machine’s own practice.

cannot convert integers ↔ pointers,

parts of Java runtime implemented in C, or sometimes
code, where you can.

allocator in C:

[STORAGE SIZE]; // Allocated array

remainder = STORAGE SIZE;

pointer to a block of at least N bytes of storage */

simpleAlloc(size t n) { // void*: pointer to anything

remainder) ERROR();

remainder = (remainder - n) & ~0x7; // Make multiple of 8

void*) (store + remainder);

13:26:19 2018 CS61B: Lecture #37 4

Example of Storage Layout: Unix

Stack
(local)

Unallocated

Heap
(new)

Static
storage

Executable
codeAddress 0

way to turn chunks of unallocated region into heap.

automatically for stack.

13:26:19 2018 CS61B: Lecture #37 5

Explicit Deallocating

normally require explicit deallocation, because of

run-time information about what is array

Possibility of converting pointers to integers.

run-time information about unions:

Various {
Int;

* Pntr;

double Double;

// X is either an int, char*, or double

all three problems; automatic collection possible.

freeing can be somewhat faster, but rather error-prone:

corruption

leaks

13:26:19 2018 CS61B: Lecture #37 6



Free Lists

allocator grabs chunks of storage from OS and gives to

recycled storage, when available.

storage is freed, added to a free list data structure to be

for explicit freeing and some kinds of automatic garbage

The Heap

Variables
(visible to program)

x y

Free List

13:26:19 2018 CS61B: Lecture #37 7

Free List Strategies

requests generally come in multiple sizes.

chunks on the free list are big enough, and one may have to
chunk and break it up if too big.

strategies to find a chunk that fits have been used:

Sequential fits:

blocks in LIFO or FIFO order, or sorted by address.

Coalesce adjacent blocks.

for first fit on list, best fit on list, or next fit on list
last-chosen chunk.

Segregated fits: separate free lists for different chunk sizes.

systems: A kind of segregated fit where some newly ad-
free blocks of one size are easily detected and combined

bigger chunks.

blocks reduces fragmentation of memory into lots of lit-
scattered chunks.

13:26:19 2018 CS61B: Lecture #37 8

Garbage Collection: Reference Counting

count of number of pointers to each object. Release
goes to 0.

1 1

1 B 1 C

X: 1 2 1

1 A 1 B 1 C

Y:

Y = X.tail;

3 1

1 B 1 C

X: 2 1

0 A 1 B 1 C

Y:

X: 2 1

Y:

. . . etc., until:

13:26:19 2018 CS61B: Lecture #37 9

Garbage Collection: Mark and Sweep

statics)

E B G

D
7

C
42
A

F

1. Traverse and mark
graph of objects.

2. Sweep through
memory, freeing
unmarked objects.

42
A

D
B*

G F
C

A
D*

7 G D
E* F

C
G*

E

D
B

G
D

7 G D
E G

E

13:26:19 2018 CS61B: Lecture #37 10

Cost of Mark-and-Sweep

Mark-and-sweep algorithms don’t move any exisiting objects—pointers
same.

amount of work depends on the amount of memory swept—
total amount of active (non-garbage) storage + amount of
Not necessarily a big hit: the garbage had to be active at
and hence there was always some “good” processing in the
each byte of garbage scanned.

13:26:19 2018 CS61B: Lecture #37 11

Copying Garbage Collection

approach: copying garbage collection takes time propor-
amount of active storage:

the graph of active objects breadth first, copying them
large contiguous area (called “to-space”).

copy each object, mark it and put a forwarding pointer
that points to where you copied it.

time you have to copy an already marked object, just
forwarding pointer instead.

done, the space you copied from (“from-space”) becomes
to-space; in effect, all its objects are freed in constant

13:26:19 2018 CS61B: Lecture #37 12



Copying Garbage Collection Illustrated

from: 42
A

D
B

G F
C

A
D

7 G D
E F

C
G

E
B: Old object
B ’: New object
*: marked

to:

from: 42
A

B ’
B*

G F
C

A
D

7 G E ’
E* F

C
G

E

to: D
B ’

G D
E ’

forwarding pointers

Copy roots

from: 42
A

B ’
B*

G F
C

A D ’
D*

7 G E ’
E* F

C G ’
G*

E

to: D ’
B ’

G ’ D
E ’ D ’

7 G
G ’

E

Copy from to-space
in (b).
Only D is new

from: 42
A

B ’
B*

G F
C

A D ’
D*

7 G E ’
E* F

C G ’
G*

E

to: D ’
B ’

G ’ D ’
E ’ D ’

7 G ’
G ’

E ’

Copy from to-space
in (c).
No new objects

13:26:19 2018 CS61B: Lecture #37 13

Objects Die Young: Generational Collection

objects stay active, and need not be collected.

nice to avoid copying them over and over.

Generational garbage collection schemes have two (or more) from
for newly created objects (new space) and one for

objects that have survived garbage collection (old space).

garbage collection collects only in new space, ignores point-
new to old space, and moves objects to old space.

uses usual roots plus pointers in old space that have changed
they might be pointing to new space).

space full, collect all spaces.

approach leads to much smaller pause times in interactive sys-

13:26:19 2018 CS61B: Lecture #37 14

There’s Much More

just highlights.

work on how to implement these ideas efficiently.

garbage collection: What if objects scattered over many

collection: where predictable pause times are important,
incremental collection, doing a little at a time.

13:26:19 2018 CS61B: Lecture #37 15


	Lecture #37
	Scope and Lifetime
	Explicit vs. Automatic Freeing
	Under the Hood: Allocation
	Example of Storage Layout: Unix
	Explicit Deallocating
	Free Lists 
	Free List Strategies
	Garbage Collection: Reference Counting
	Garbage Collection: Mark and Sweep
	Cost of Mark-and-Sweep
	Copying Garbage Collection
	Copying Garbage Collection Illustrated
	Most Objects Die Young: Generational Collection
	There's Much More

