
Lecture #37

Today: A little side excursion into nitty-gritty stuff: Storage man-
agement.

Last modified: Mon Nov 26 13:26:19 2018 CS61B: Lecture #37 1

Scope and Lifetime

• Scope of a declaration is portion of program text to which it applies
(is visible).

– Need not be contiguous.

– In Java, is static: independent of data.

• Lifetime or extent of storage is portion of program execution dur-
ing which it exists.

– Always contiguous

– Generally dynamic: depends on data

• Classes of extent:

– Static: entire duration of program

– Local or automatic: duration of call or block execution (local vari-
able)

– Dynamic: From time of allocation statement (new) to dealloca-
tion, if any.

Last modified: Mon Nov 26 13:26:19 2018 CS61B: Lecture #37 2

Explicit vs. Automatic Freeing

• Java has no explicit means to free dynamic storage.

• However, when no expression in any thread can possibly be influ-
enced by or change an object, it might as well not exist:

IntList wasteful()

{

IntList c = new IntList(3, new IntList(4, null));

return c.tail;

// variable c now deallocated, so no way

// to get to first cell of list

}

• At this point, Java runtime, like Scheme’s, recycles the object c

pointed to: garbage collection.

Last modified: Mon Nov 26 13:26:19 2018 CS61B: Lecture #37 3

Under the Hood: Allocation

• Java pointers (references) are represented as integer addresses.

• Corresponds to machine’s own practice.

• In Java, cannot convert integers ↔ pointers,

• But crucial parts of Java runtime implemented in C, or sometimes
machine code, where you can.

• Crude allocator in C:

char store[STORAGE SIZE]; // Allocated array

size t remainder = STORAGE SIZE;

/** A pointer to a block of at least N bytes of storage */

void* simpleAlloc(size t n) { // void*: pointer to anything

if (n > remainder) ERROR();

remainder = (remainder - n) & ~0x7; // Make multiple of 8

return (void*) (store + remainder);

}

Last modified: Mon Nov 26 13:26:19 2018 CS61B: Lecture #37 4

Example of Storage Layout: Unix

Stack
(local)

Unallocated

Heap
(new)

Static
storage

Executable
codeAddress 0

• OS gives way to turn chunks of unallocated region into heap.

• Happens automatically for stack.

Last modified: Mon Nov 26 13:26:19 2018 CS61B: Lecture #37 5

Explicit Deallocating

• C/C++ normally require explicit deallocation, because of

– Lack of run-time information about what is array

– Possibility of converting pointers to integers.

– Lack of run-time information about unions:

union Various {
int Int;

char* Pntr;

double Double;

} X; // X is either an int, char*, or double

• Java avoids all three problems; automatic collection possible.

• Explicit freeing can be somewhat faster, but rather error-prone:

– Memory corruption

– Memory leaks

Last modified: Mon Nov 26 13:26:19 2018 CS61B: Lecture #37 6

Free Lists

• Explicit allocator grabs chunks of storage from OS and gives to
applications.

• Or gives recycled storage, when available.

• When storage is freed, added to a free list data structure to be
recycled.

• Used both for explicit freeing and some kinds of automatic garbage
collection.

The Heap

Variables
(visible to program)

x y

Free List

Last modified: Mon Nov 26 13:26:19 2018 CS61B: Lecture #37 7

Free List Strategies

• Memory requests generally come in multiple sizes.

• Not all chunks on the free list are big enough, and one may have to
search for a chunk and break it up if too big.

• Various strategies to find a chunk that fits have been used:

– Sequential fits:

∗ Link blocks in LIFO or FIFO order, or sorted by address.

∗ Coalesce adjacent blocks.

∗ Search for first fit on list, best fit on list, or next fit on list
after last-chosen chunk.

– Segregated fits: separate free lists for different chunk sizes.

– Buddy systems: A kind of segregated fit where some newly ad-
jacent free blocks of one size are easily detected and combined
into bigger chunks.

• Coalescing blocks reduces fragmentation of memory into lots of lit-
tle scattered chunks.

Last modified: Mon Nov 26 13:26:19 2018 CS61B: Lecture #37 8

Garbage Collection: Reference Counting

• Idea: Keep count of number of pointers to each object. Release
when count goes to 0.

X: 1 1 1

1 A 1 B 1 C

Y:

X: 1 2 1

1 A 1 B 1 C

Y:

Y = X.tail;

X: 0 3 1

1 A 1 B 1 C

Y:

X = Y;

X: 2 1

0 A 1 B 1 C

Y:

X: 2 1

Y:

. . . etc., until:

Last modified: Mon Nov 26 13:26:19 2018 CS61B: Lecture #37 9

Garbage Collection: Mark and Sweep

Roots (locals + statics)

5 E B G

D
7

C
42
A

F

1. Traverse and mark
graph of objects.

2. Sweep through
memory, freeing
unmarked objects.

Before sweep: 42
A

D
B*

G F
C

A
D*

7 G D
E* F

C
G*

E

After sweep: D
B

G
D

7 G D
E G

E

Last modified: Mon Nov 26 13:26:19 2018 CS61B: Lecture #37 10

Cost of Mark-and-Sweep

• Mark-and-sweep algorithms don’t move any exisiting objects—pointers
stay the same.

• The total amount of work depends on the amount of memory swept—
i.e., the total amount of active (non-garbage) storage + amount of
garbage. Not necessarily a big hit: the garbage had to be active at
one time, and hence there was always some “good” processing in the
past for each byte of garbage scanned.

Last modified: Mon Nov 26 13:26:19 2018 CS61B: Lecture #37 11

Copying Garbage Collection

• Another approach: copying garbage collection takes time propor-
tional to amount of active storage:

– Traverse the graph of active objects breadth first, copying them
into a large contiguous area (called “to-space”).

– As you copy each object, mark it and put a forwarding pointer
into it that points to where you copied it.

– The next time you have to copy an already marked object, just
use its forwarding pointer instead.

– When done, the space you copied from (“from-space”) becomes
the next to-space; in effect, all its objects are freed in constant
time.

Last modified: Mon Nov 26 13:26:19 2018 CS61B: Lecture #37 12

Copying Garbage Collection Illustrated

Roots

B
5

E

from: 42
A

D
B

G F
C

A
D

7 G D
E F

C
G

E
B: Old object
B ’: New object
*: marked

to:

(a)

Roots

B ’
5

E ’

from: 42
A

B ’
B*

G F
C

A
D

7 G E ’
E* F

C
G

E

to: D
B ’

G D
E ’(b)

forwarding pointers

Copy roots

Roots

B ’
5

E ’

from: 42
A

B ’
B*

G F
C

A D ’
D*

7 G E ’
E* F

C G ’
G*

E

to: D ’
B ’

G ’ D
E ’ D ’

7 G
G ’

E

(c)
Copy from to-space
in (b).
Only D is new

Roots

B ’
5

E ’

from: 42
A

B ’
B*

G F
C

A D ’
D*

7 G E ’
E* F

C G ’
G*

E

to: D ’
B ’

G ’ D ’
E ’ D ’

7 G ’
G ’

E ’

(d)
Copy from to-space
in (c).
No new objects

Last modified: Mon Nov 26 13:26:19 2018 CS61B: Lecture #37 13

Most Objects Die Young: Generational Collection

• Most older objects stay active, and need not be collected.

• Would be nice to avoid copying them over and over.

• Generational garbage collection schemes have two (or more) from
spaces: one for newly created objects (new space) and one for
“tenured” objects that have survived garbage collection (old space).

• A typical garbage collection collects only in new space, ignores point-
ers from new to old space, and moves objects to old space.

• As roots, uses usual roots plus pointers in old space that have changed
(so that they might be pointing to new space).

• When old space full, collect all spaces.

• This approach leads to much smaller pause times in interactive sys-
tems.

Last modified: Mon Nov 26 13:26:19 2018 CS61B: Lecture #37 14

There’s Much More

• These are just highlights.

• Lots of work on how to implement these ideas efficiently.

• Distributed garbage collection: What if objects scattered over many
machines?

• Real-time collection: where predictable pause times are important,
leads to incremental collection, doing a little at a time.

Last modified: Mon Nov 26 13:26:19 2018 CS61B: Lecture #37 15

	Lecture #37
	Scope and Lifetime
	Explicit vs. Automatic Freeing
	Under the Hood: Allocation
	Example of Storage Layout: Unix
	Explicit Deallocating
	Free Lists
	Free List Strategies
	Garbage Collection: Reference Counting
	Garbage Collection: Mark and Sweep
	Cost of Mark-and-Sweep
	Copying Garbage Collection
	Copying Garbage Collection Illustrated
	Most Objects Die Young: Generational Collection
	There's Much More

