B Lecture #4: Values and Containers

assroom announcements from outside groups to Piazza
in the 'outside_postings' folder.

mally due at midnight Friday.
w released.

ple classes. Scheme-like lists. Destructive vs. non-
pperations. Models of memory.

:39:50 2018 CS61B: Lecture #4 2

Structured Containers

tainers contain (O or more) other containers:

ject Array Object Empty Object

1:39:50 2018 CS61B: Lecture #4 4

Containers in Java

\ay be named or anonymous.

simple containers are named, all structured contain-
ymous, and pointers point only to structured containers.
structured containers contain only simple containers).

named simple containers (fields)
within structured containers

h h

[3 7
simple container structured containers

(local variable) (anonymous)

gnment copies values into simple containers.
Scheme and Pythonl!

has slice assignment, as in x[3:7]=. . ., which is short-
rething else entirely.)

1:39:50 2018 CS61B: Lecture #4 6

Recreation
hat [(2+V/3)"] is odd for all integer n > 0.

larsky, N. N. Chentzov, I. M. Yaglom, The USSR Olympiad Problem
93), from the W. H. Freeman edition, 1962.]

:39:50 2018 CS61B: Lecture #4 1

Values and Containers

umbers, booleans, and pointers. Values never change.

a true JT— \ J"

liners contain values:
«F N eE

wriables, fields, individual array elements, parameters.

1:39:50 2018 CS61B: Lecture #4 3

Pointers

references) are values that reference (point to) con-

ar pointer, called null, points to nothing.

uctured containers contain only simple containers, but
w us to build arbitrarily big or complex structures any-

1:39:50 2018 CS61B: Lecture #4 5

Primitive Operations

BN
N

t(3, null); L: = “

£(42, null); L T3] 42\

AN
head == 43 Q[

:39:50 2018 CS61B: Lecture #4 8

nother Way to View Pointers (II)

»ointer to a variable looks just like assigning an integer

ecuting “last = last.tail;" we have

last:|
result:| -] 5] {45\
Jiew:
IasT:
. 5 | #3 45
r'esul‘r. !LI | | !il N

\ative view, you might be less inclined to think that as-
ild change object #7 itself, rather than just “last”.

ternally, pointers really are just numbers, but Java
as more than that: they have types, and you can't just
ers into pointers.

1:39:50 2018 CS61B: Lecture #4 10

ondestructive IncrList: Recursive

f all items in P incremented by n. */

List incrList(IntList P, int n) {

" null)

. null;

urn new IntList(P.head+n, incrList(P.tail, n));

icrList have to return its result, rather than just set-

icrList (P, 2),whereP contains 3 and 43, which IntList
created first?

1:39:50 2018 CS61B: Lecture #4 12

Defining New Types of Object

rtions introduce new types of objects.
of integers:

s IntList {

uctor function (used to initialize new object)
cell containing (HEAD, TAIL). */

tList (int head, IntList tail) {

ad = head; this.tail = tail;

of simple containers (fields)

G: public instance variables usually bad style!
t head;

tList tail;

:39:50 2018 CS61B: Lecture #4 7

cursion: Another Way to View Pointers

‘ind the idea of “copying an arrow" somewhat odd.
riew: think of a pointer as a label, like a street address.

has a permanent label on it, like the address plaque on

ble containing a pointer is like a scrap of paper with a
:$s written on it.

last:|
result:| -] 5] =145\
Jiew:
IasT:
. 5 |#3 45
r'esuIT. !ﬂ | | !il I\I

1:39:50 2018 CS61B: Lecture #4 9

destructive vs. Non-destructive

1 a (pointer to a) list of integers, L, and an infeger in-
rna list created by incrementing all elements of the list

f all items in P incremented by n. Does not modify
ng IntLists. */

List incrList(IntList P, int n) {

. /*(P, with each element incremented by n)*/

t is non-destructive, because it leaves the input objects
nown on the left. A destructive method may modify the
o that the original data is no longer available, as shown

rList(L, 2): After Q = dincrList(L, 2) (destructive):
L:[F=l5] {4\
45\ Q[

1:39:50 2018 CS61B: Lecture #4 11

An Iterative Version

rList is tricky, because it is not tail recursive.
hings first-to-last, unlike recursive version:

pcrlist(IntList P, int n) {

last;
[F—F-FE 5N

gt (P.head+n, null);
last: !

= null) {
result: = H

ist(P.head+n, null);
Lail;

:39:50 2018 CS61B: Lecture #4 14

An Iterative Version

;rList is tricky, because it is not tail recursive.
things first-to-last, unlike recursive version:

ncrList(IntList P, int n) {

, last;
O B -EN

st(P.head+n, null);
last: !

'= null) {
K< result:| - [5] {45\

ist(P.head+n, null);
tail;

1:39:50 2018 CS61B: Lecture #4 16

An Iterative Version

;rList is tricky, because it is not tail recursive.
things first-to-last, unlike recursive version:

ncrList(IntList P, int n) {

, last;

P: [3] 193] g5\
last:| -
result: =

st(P.head+n, null);
'= null) {

<L
| [5] 145\
ist(P.head+n, null);
tail;

1:39:50 2018 CS61B: Lecture #4 18

An Iterative Version

rList is tricky, because it is not tail recursive.
hings first-to-last, unlike recursive version:

ncrList(IntList P, int n) {
<L

last;

[35N

5t (P.head+n, null);
= null) {

ist(P.head+n, null);
tail;

:39:50 2018 CS61B: Lecture #4 13

An Iterative Version

;rList is tricky, because it is not tail recursive.
things first-to-last, unlike recursive version:

ncrList(IntList P, int n) {

- O B RN

st (P.head+n, null);
last: !

'= null) {
result:| - [5 1\

<L

ist(P.head+n, null);
tail;

1:39:50 2018 CS61B: Lecture #4 15

An Iterative Version

;rList is tricky, because it is not tail recursive.
things first-to-last, unlike recursive version:

ncrList(IntList P, int n) {

[N EEnESTERTN

st (P.head+n, null);
last: =

'= null) {
result:| - [5] 45\

ist(P.head+n, null);
tail; <<<

1:39:50 2018 CS61B: Lecture #4 17

An Iterative Version

rList is tricky, because it is not tail recursive.
hings first-to-last, unlike recursive version:

pcrlist(IntList P, int n) {

last;

P: [3] F—f43] J—{5e]\|

gt (P.head+n, null);
= null) { last:

O
result:[F——5 [F{45] 58]\

ist(P.head+n, null);
tail; <<<

:39:50 2018 CS61B: Lecture #4 20

An Iterative Version

rList is tricky, because it is not tail recursive.
hings first-to-last, unlike recursive version:

ncrList(IntList P, int n) {

o P BERNEERGN

5t (P.head+n, null);

= null) { last:

<<< result: 5 45 58
ist(P.head+n, null);
tail;

CS61B: Lecture #4 19

:39:50 2018

	Recreation
	CS61B Lecture #4: Values and Containers
	Values and Containers
	Structured Containers
	Pointers
	Containers in Java
	Defining New Types of Object
	Primitive Operations
	Side Excursion: Another Way to View Pointers
	Another Way to View Pointers (II)
	Destructive vs. Non-destructive
	Nondestructive IncrList: Recursive
	An Iterative Version

