
Announcements

post @459 to sign up for one-on-one tutoring next week.

Recreation

log(1 + x) = x−
1

2
x2 +

1

3
x3 − . . .

the case that

1/2 + 1/3− 1/4 + 1/5− 1/6 + 1/7− 1/8 + 1/9− . . .

1/3 + 1/5 + 1/7 + 1/9 + . . .)− (1/2 + 1/4 + 1/6 + 1/8 + . . .)

1/3 + 1/5 + 1/7 + 1/9 + . . .) + (1/2 + 1/4 + 1/6 + 1/8 + . . .)

/2 + 1/4 + 1/6 + 1/8 + . . .)

1/2 + 1/3 + 1/4 + . . .)− (1 + 1/2 + 1/3 + 1/4 + . . .)

11:08:55 2018 CS61B: Lecture #7 1

Lecture #7: Object-Based Programming

Function-based programs are organized primarily around the func-
(methods, etc.) that do things. Data structures (objects) are

separate.

Object-based programs are organized around the types of objects
used to represent data; methods are grouped by type of

banking-system example:

account

withdraw

account

Function-based

Account

deposit

withdraw balance: 1420

Exported
methods

Exported
field

Object-based

11:08:55 2018 CS61B: Lecture #7 2

Philosophy

1970s and before): An abstract data type is

possible values (a domain), plus

operations on those values (or their containers).

for example, the domain was a set of pairs: (head,tail),
is an int and tail is a pointer to an IntList.

operations consisted only of assigning to and accessing
fields (head and tail).

we prefer a purely procedural interface, where the func-
(methods) do everything—no outside access to the internal

representation (i.e., instance variables).

implementor of a class and its methods has complete con-
behavior of instances.

preferred way to write the “operations of a type” is as
methods.

11:08:55 2018 CS61B: Lecture #7 3

It All (Maybe) in CS61A: The Account Class

(self, balance0):

self.balance = balance0

deposit(self, amount):

self.balance += amount

self.balance

withdraw(self, amount):

self.balance < amount:

raise ValueError \

("Insufficient funds")

self.balance -= amount

self.balance

Account(1000)

print(myAccount.balance)

myAccount.deposit(100)

myAccount.withdraw(500)

public class Account {

public int balance;

public Account(int balance0) {

this.balance = balance0;

}

public int deposit(int amount) {

balance += amount; return balance;

}

public int withdraw(int amount) {

if (balance < amount)

throw new IllegalStateException

("Insufficient funds");

else balance -= amount;

return balance;

}

}

Account myAccount = new Account(1000);

print(myAccount.balance)

myAccount.deposit(100);

myAccount.withdraw(500);

11:08:55 2018 CS61B: Lecture #7 4

You Also Saw It All in CS61AS

account balance0)

(instance-vars (balance 0))

balance balance0))

deposit amount)

balance (+ balance amount))

withdraw amount)

balance amount)

"Insufficient funds")

balance (- balance amount))

balance))) )

-account

account 1000))

’balance)

’deposit 100)

’withdraw 500)

public class Account {

public int balance;

public Account(int balance0) {

balance = balance0;

}

public int deposit(int amount) {

balance += amount; return balance;

}

public int withdraw(int amount) {

if (balance < amount)

throw new IllegalStateException

("Insufficient funds");

else balance -= amount;

return balance;

}

}

Account myAccount = new Account(1000);

myAccount.balance

myAccount.deposit(100);

myAccount.withdraw(500);

11:08:55 2018 CS61B: Lecture #7 5

The Pieces

declaration defines a new type of object, i.e., new type of
container.

variables such as balance are the simple containers within
objects (fields or components).

methods, such as deposit and withdraw are like ordinary
methods that take an invisible extra parameter (called this).

operator creates (instantiates) new objects, and initializes
constructors.

Constructors such as the method-like declaration of Account are
methods that are used only to initialize new instances. They

arguments from the new expression.

selection picks methods to call. For example,

myAccount.deposit(100)

call the method named deposit that is defined for the
pointed to by myAccount.

11:08:55 2018 CS61B: Lecture #7 6



Getter Methods

problem with Java version of Account: anyone can assign to
field

reduces the control that the implementor of Account has over
values of the balance.

allow public access only through methods:

class Account {
private int balance;

int balance() { return balance; }

Account. balance = 1000000 is an error outside Account.

convention of putting ‘_’ at the start of private instance
distinguish them from local variables and non-private

Could actually use balance for both the method and the
please don’t.)

11:08:55 2018 CS61B: Lecture #7 7

Class Variables and Methods

want to keep track of the bank’s total funds.

number is not associated with any particular Account, but is
all—it is class-wide. In Java, “class-wide” ≡ static.

class Account {

private static int funds = 0;

int deposit(int amount) {
balance += amount;

funds += amount; // or this. funds or Account. funds

return balance;

static int funds() {
return funds; // or Account. funds

// Also change withdraw.

outside, can refer to either Account.funds() or to
myAccount.funds() (same thing).

11:08:55 2018 CS61B: Lecture #7 8

Instance Methods

method such as

deposit(int amount) {
balance += amount;

+= amount;

balance;

sort of like a static method with hidden argument:

int deposit(final Account this, int amount) {
balance += amount;

+= amount;

this. balance;

explanatory: Not real Java (not allowed to declare
final is real Java; means “can’t change once set.”)

11:08:55 2018 CS61B: Lecture #7 9

Calling Instance Method

(Fictional) equivalent of deposit instance method. */

deposit(final Account this, int amount) {
balance += amount;

amount;

this. balance;

the instance-method call myAccount.deposit(100) is like
fictional static method:

Account.deposit(myAccount, 100);

instance method, as a convenient abbreviation, one can
the leading ‘this.’ on field access or method call if not
(Unlike Python)

11:08:55 2018 CS61B: Lecture #7 10

‘Instance’ and ‘Static’ Don’t Mix

static methods don’t have the invisible this parameter,
sense to refer directly to instance variables in them:

static int badBalance(Account A) {
= A. balance; // This is OK

// (A tells us whose balance)

return balance; // WRONG! NONSENSE!

to balance here equivalent to this. balance,

meaningless (whose balance?)

makes perfect sense to access a static (class-wide) field
in an instance method or constructor, as happened with

the deposit method.

one of each static field, so don’t need to have a ‘this’
Can just name the class (or use no qualification inside the
we’be been doing).

11:08:55 2018 CS61B: Lecture #7 11

Constructors

completely control objects of some class, you must be able to set
contents.

constructor is a kind of special instance method that is called by
operator right after it creates a new object, as if

IntList(1,null) =⇒































tmp = pointer to 0
tmp.IntList(1, null);

L = tmp;

11:08:55 2018 CS61B: Lecture #7 12



Constructors and Default Constructors

have constructors. In the absence of any explicit con-
get default constructor, as if you had written:

class Foo {
public Foo() { }

overloaded constructors possible, and they can use each
(although the syntax is odd):

class IntList {
public IntList(int head, IntList tail) {

this.head = head; this.tail = tail;

public IntList(int head) {
this(head, null); // Calls first constructor.

11:08:55 2018 CS61B: Lecture #7 13

Constructors and Instance Variables

variables initializations are moved inside constructors that
with this(...).

{
= 5;

int y) {
DoStuff(y);

{
this(42);

⇐⇒

class Foo {
int x;

Foo(int y) {
x = 5;

DoStuff(y);

}

Foo() {
this(0); // Assigns to x

}
}

11:08:55 2018 CS61B: Lecture #7 14

Summary: Java vs. Python

Java Python

{
= ...;

Foo(...)

... }
(...)

}
int y = 21;

void g(...)

}

class Foo: ...

x = ...

def __init__(self, ...):

...

def f(self, ...):

...

y = 21 # Referred to as Foo.y

@staticmethod

def g(...):

...

Foo(...)

aFoo.f(...)

aFoo.x

Foo(...)

self # (typically)

11:08:55 2018 CS61B: Lecture #7 15


	Announcements
	CS61B Lecture #7: Object-Based Programming
	Philosophy
	You Saw It All (Maybe) in CS61A: The Account Class
	You Also Saw It All in CS61AS
	The Pieces
	Getter Methods
	Class Variables and Methods
	Instance Methods 
	Calling Instance Method
	`Instance' and `Static' Don't Mix
	Constructors
	Multiple Constructors and Default Constructors
	Constructors and Instance Variables
	Summary: Java vs. Python

