
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS61B P. N. Hilfinger
Fall 2016

Final Examination (revised)

READ THIS PAGE FIRST. Please do not discuss this exam with people who haven’t taken

it. Your exam should contain 11 problems on 19 pages. Officially, it is worth 46 points
(out of a total of 200).

This is an open-book test. You have three hours to complete it. You may consult any
books, notes, or other non-responsive objects available to you. You may use any program
text supplied in lectures, problem sets, or solutions. Please write your answers in the spaces
provided in the test. Make sure to put your name, login, and TA in the space provided
below. Put your login and initials clearly on each page of this test and on any additional
sheets of paper you use for your answers.

Be warned: our tests are known to cause panic. Fortunately, this reputation is entirely
unjustified. Just read all the questions carefully to begin with, and first try to answer
those parts about which you feel most confident. Do not be alarmed if some of the answers
are obvious. Should you feel an attack of anxiety coming on, feel free to jump up and run
around the outside of the building once or twice.

Your name: Login:

Login of person to your Left: Right:

Discussion TA:

Please sign the following:

I pledge my honor that during this examination I have neither given nor
received assistance.

Signature:

1



Final Examination Login: Initials: 2

Reference Material.

/** Excerpt of java.util.List interface. */

public interface List<T> {

public int size();

public boolean isEmpty();

public T get(int index);

public boolean add(T item);

public boolean add(int index, T item);

public T set(int index, T item);

}

/** Excerpt of java.util.PriorityQueue class. */

public PriorityQueue<E> extends AbstractQueue<E> implements Serializable {

public PriorityQueue();

public PriorityQueue(Comparator<? super E> ordering);

public boolean isEmpty();

public boolean add(E item);

public E poll();

}

/** Excerpt of java.util.Collections class. */

public class Collections {

public static <T> Comparator<T> reverseOrder();

}

/** Linked list of integers. */

public class IntList {

public IntList(int hd, IntList tl) {

head = hd; tail = tl;

}

public int head;

public IntList tail;

}



Final Examination Login: Initials: 3



Final Examination Login: Initials: 4

1. [4 points] Draw the box-and-pointer diagram corresponding to the state at each of the
marked points (Q1, Q2, Q3, Q4) in the main program below. There are no runtime errors
in executing the program.

public class Mystery {

public static void mystery1(IntList L) {

IntList front = L;

for (; L.tail != null; L = L.tail.tail) {

IntList one = new IntList(1, L.tail);

L.tail = one;

}

L.tail = front;

}

public static void mystery2(IntList L) {

L.tail.tail = new IntList(0, L.tail.tail);

}

public static void mystery3(IntList L1, IntList L2) {

for (int i = 0; i < 3; i += 1, L1 = L1.tail, L2 = L2.tail) {

int tempInt = L1.head;

L1.head = L2.head;

L2.head = tempInt;

IntList tempIL = L1;

L1 = L2;

L2 = tempIL;

}

}

public static void main(String[] args) {

IntList L1 = new IntList(4, null);

IntList L2 = new IntList(6, new IntList(8, L1));

// Q1

mystery1(L2);

// Q2

mystery2(L1);

// Q3

L1 = L2.tail.tail.tail;

mystery3(L1, L2);

// Q4

}

}



Final Examination Login: Initials: 5

Q1. L1:

L2:

Q2. L1:

L2:

Q3. L1:

L2:

Q4. L1:

L2:



Final Examination Login: Initials: 6

2. [2 points] Fill in the return statement in the following to fulfill the comment.

/** Returns the result of rotating the right half (i.e., the least

* significant 16 bits) of X left by 1, leaving the left half unchanged.

* Rotating a binary integer left means moving all but the most

* significant bit left by one bit position and moving the most

* significant bit to the least significant (units) position. For example,

* (0b indicates binary notation; 0x indicates hexadecimal):

* rotateHalf(3) == rotateHalf(0b0011) == 0b0110 == 6

* rotateHalf(32769) == rotateHalf(0x8001) == rotateHalf(0b1000000000000001)

* == 0b0011 == 3

* rotateHalf(3309569) == rotateHalf(0x328001)

* == rotateHalf(0b1100101000000000000001)

* == 0b1100100000000000000011 == 0x320003 == 3276803

*/

int rotateHalf(int x) {

int mask = 0xffff;

return

;

}

3. [2 points] Fill in the blank in the following to fulfill the comment.

import java.util.regex.Pattern;

/** A Java pattern that matches a single numeral consisting of an optional

* sign followed by one or more digits, with groups of three digits

* separated by commas. For example, the pattern matches any of

* 1 -1 23 +25 117 1,243 -20,176

* but not

* 1,2 32, 1024 121,32 --75

*

*/

static final Pattern NUMBER =

Pattern.compile(" ");



Final Examination Login: Initials: 7

4. [4 points]
Below you will find intermediate steps in performing various sorting algorithms on the

same input list. The steps do not necessarily represent consecutive steps in the algorithm
(that is, many steps are missing), but they are in the correct sequence. For each of them,
select the algorithm it illustrates from among the following choices: insertion sort, selection
sort, mergesort, quicksort (first element of sequence as pivot), heapsort, LSD radix and
MSD radix sort.

Input List:

1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000

a.

1000, 3291, 9001, 192, 4242, 4392, 7683, 594, 1337, 1429, 129

1000, 9001, 1429, 129, 1337, 4242, 7683, 3291, 192, 4392, 594

1000, 9001, 129, 192, 4242, 3291, 1337, 4392, 1429, 594, 7683

b.

1337, 192, 594, 129, 1000, 1429, 3291, 7683, 4242, 9001, 4392

192, 594, 129, 1000, 1337, 1429, 3291, 7683, 4242, 9001, 4392

129, 192, 594, 1000, 1337, 1429, 3291, 7683, 4242, 9001, 4392

c.

1337, 1429, 3291, 7683, 192, 594, 4242, 9001, 4392, 129, 1000

192, 1337, 1429, 3291, 7683, 594, 4242, 9001, 4392, 129, 1000

192, 594, 1337, 1429, 3291, 7683, 4242, 9001, 4392, 129, 1000

d.

1429, 3291, 7683, 9001, 1000, 594, 4242, 1337, 4392, 129, 192

7683, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 129, 9001

129, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 7683, 9001

In all these cases, the final step of the algorithm will be this:

129, 192, 594, 1000, 1337, 1429, 3291, 4242, 4392, 7683, 9001



Final Examination Login: Initials: 8

5. [6 points] For each question below, respond in the best way that you can, based on the
material you have learned in this class. Read each question carefully; the exact questions
being asked will differ from scenario to scenario.

Brevity is the soul of wit. We reserve the right to deduct partial credit for overly
lengthy answers.

a. Your friend, a budding politician, meets several hundred people a day and places
their names onto the front of an ArrayList. Once there, he never removes a name,
but sometimes looks through the list to see the order in which he met people.

At least one aspect of his procedures is slower than it could be. Describe a small
change in your friend’s use of the data structure that would improve runtime without
changing the data structure involved. Briefly justify why your change speeds things
up.

Now describe a change in the data structure that would improve runtime without
requiring a change in actions taken. Briefly justify the speedup.

b. A TopBalancedTree class is a BST that (somehow) ensures the number of stored
elements to the left of the root of the tree differs by no more than one from the
number of elements to the right of the root. Your friend claims that this data
structure has O(lgN) worst-case retrieval time for any element, because you only
have to look at half of the elements in the data structure.

How long does the .contains(·) method actually take in the worst case for this data
structure?

Suggest a modification of the class that uses the same idea, but does achieve O(lgN)
look-up time. You do not have to justify your answer.



Final Examination Login: Initials: 9

c. You are building a map server application that uses A* search to find shortest routes
between points. Your friend has a suggestion for a suitable heuristic estimate from
any point A to destination B: collect crowd-sourced data from drivers in which they
report the longest time it has ever taken them to travel between A and B (i.e., on
the busiest of days) and use the average of these worst-case times as the heuristic.
(Most people would find it tedious to keep track of that information, but fortunately
there’s an app for that.) What is wrong with your friend’s suggestion? Be specific.

d. Why doesn’t the fact that Radix Sort is a linear time sorting algorithm violate the
Ω(N lgN) lower bound which we established for the other sorts?



Final Examination Login: Initials: 10

e. You are told that in a certain application, insertion sort is guaranteed to be the best
algorithm to sort a list of numbers used in that application. What might you infer
about the characteristics of that list?

f. Consider the following class:

class Hasher {

private Random gen = new Random();

int hash(int y, int M) {

int r = rotate(y, gen.nextInt(32)) >>> 1;

return r % M;

}

}

That is, .hash rotates the bits of y left by a random amount < 32, and then logically
shifts the result right by one to get a non-negative number before taking modulo M.
If H is an object of type Hasher is H.hash(x, N) good to use for hashed values of x
(where N is the size of the table)? Briefly, why or why not?



Final Examination Login: Initials: 11

6. [6 points]

a. Show the left-leaning red-black tree that corresponds to the (2,3) tree on the left.
Indicate red nodes with an asterisk (as in part (b) below).

(2, 3) tree Left-Leaning Red-Black Tree

• • •
10 40

• • •
5 8

• •
3

• •
6

• •
9

• •
15

• •
14

• • •
20 30

• •
90

• •
80

• •
95

b. Show the (2,4) tree that corresponds to the red-black tree on the left. Red nodes are
marked with an asterisk.

Red-Black Tree (2, 4) tree

10

20*

16

12*

25

5

1* 8*



Final Examination Login: Initials: 12

7. [6 points]
In the following, assume that cnst() is a constant-time function call. When giving

bounds, give bounds that are as tight and simple as possible. For example if Θ(E + G)
is a correct answer for some expressions E and G, and Θ(E + G) = Θ(E), then your
answer should be Θ(E), since it is simpler. If O(E) and O(G) are both correct answers,
O(E) ⊂ O(G), but O(E) 6= O(G), then your answer should be O(E), since it is tighter.

a. Give best- and worst-case bounds as a function of N .

public static void foo1(int N) {

if (N == 0) return;

for (int i = N; i >= 1; i = i/2) {

cnst();

}

foo1(N - 1);

}

Best case: Θ( ) Worst case: Θ( )

b. Give best- and worst-case runtime bounds for the call foo2(N, N) as a function of
N .

public static void foo2(int i, int N) {

if (N == 0) return;

for (int j = 0; j < i; j = j + 1) {

cnst();

}

if (i > N/2) {

foo2(i - 1, N);

} else {

foo2(i/2, N) + foo2(i/2, N);

}

}

Best case: Θ( ) Worst case: Θ( )

c. True or false: if f(N) ∈ O(N) and g(N) ∈ O(N2), and both functions are non-
negative, then |g(N) − f(N)| ∈ Ω(N). If true, explain why; otherwise give a coun-
terexample.



Final Examination Login: Initials: 13

d. True or false: if f(N) ∈ Θ(N) and g(N) ∈ Θ(N2), and both functions are non-
negative, then |g(N) − f(N)| ∈ Ω(N). If true, explain why; otherwise give a coun-
terexample.

e. What is the running time of the following algorithm, as a function of the parameter
r?

/** Assumes that VALS is a square array, and that 0 <= R, C < vals.length.

*/

double best(double vals[][], int r, int c) {

if (r == 0)

return vals[r][c];

double v;

v = best(vals, r - 1, c);

if (c > 0)

v = Math.max(v, best(vals, r - 1, c - 1);

if (c < vals[r].length - 1)

v = Math.max(v, best(vals, r - 1, c + 1);

return v + vals[r][c];

}

Answer:

f. Suppose that the function in part (e) is memoized. Give an expression E involving
the parameter r and N =vals.length such that the running time of the memoized
function is Θ(E).

Answer: E =



Final Examination Login: Initials: 14

8. [4 points]
Indicate whether the following statements are true or false and briefly justify your

answer (if false, a counterexample is sufficient justification).

a. If all edge weights are equal and positive, breadth-first search starting from node A

will return the shortest path from a node A to a target node B.

b. If all edges have distinct weights, the shortest path between any two vertices is unique.

c. Assume we have some graph, G, with a unique shortest path from vertex A to B.
We add a positive constant, k, to every edge to create a new graph G′. The shortest
path in G′ from A to B is the same in G′ as in G.

d. Topologically sorting a connected graph with E edges requires Θ(E lgE) time in the
worst case.



Final Examination Login: Initials: 15

9. [1 point] What do members of the U.S.I. at Berkeley have in common?

10. [6 points] An M-way search tree, of which a B-tree is a special case, has a sequence
of < M keys in sorted order in each node. A node with 0 < n < M keys (call them
K0, . . .Kn−1) has n + 1 children (call them C0, . . . , Cn) with the property that for all
0 ≤ i < n, all keys in the subtree rooted at Ci are < Ki, and all keys in the subtree rooted
at Ci+1 are > Ki. Null values indicate empty trees. For example (M = 5):

• • • •
10 40 80

• • •
5 8

• •
3

• •
6

• •
9

• •
15

• • • • •
90 95 97 99

We will use these trees to implement a kind of set (so adding a duplicate key should
have no effect). The strategy for insertion of a new key, A, is to find a node, P , in which
the appropriate child to contain A is empty (null) and then either to insert A in P at the
appropriate place if P has fewer then M children, and otherwise to create a new child of P
containing just A. For example, after inserting 45 into the example above, we would have
the tree on the left below, and then after inserting 91, we’d have the tree on the right.

• • • • •
10 40 45 80

• • •
5 8

• •
3

• •
6

• •
9

• •
15

• • • • •
90 95 97 99

• • • • •
10 40 45 80

• • •
5 8

• •
3

• •
6

• •
9

• •
15

• • • • •
90 95 97 99

• •
91

Fill in the class on the next two pages to implement this data structure (partially, that
is; some operations are not considered.)



Final Examination Login: Initials: 16

public class MTreeSet<Label extends Comparable<Label>> {

private int _M;

private Node _root;

/** An M-way set. Assumes M > 1. */

public MTreeSet(int M) { _M = M; }

private class Node {

ArrayList<Label> keys = new ArrayList<>();

ArrayList<Node> kids = new ArrayList<>();

Node(Label K) {

keys.add(K); kids.add(null); kids.add(null);

}

}

/** Return true iff X is in this set. */

public boolean contains(Label x) {

return contains(_root, x);

}

private boolean contains(Node t, Label x) {

if (t == null) {

return false;

}

int nkeys = t.keys.size();

for (int i = 0; i < ; i += 1) {

int c = x.compareTo( );

if (c < 0) {

return ;

} else if ( ) {

return true;

}

}

return contains( , x);

}

Continued on next page.



Final Examination Login: Initials: 17

Continuation of MTreeSet.

/** Insert X into this set. Has no effect if X is already in the

set. */

public void add(Label x) {

_root = add(_root, x);

}

private Node add(Node t, Label x) {

if (t == null) {

return

}

int nkeys = t.keys.size();

int i;

for (i = 0; i < ; i += 1) {

int c = x.compareTo( );

if (c < 0) {

break;

} else if (c == 0) {

return ;

}

}

if (t.kids.get(i) == null && ) {

t.kids.add( , );

t.keys.add( , );

} else {

t.kids.set( );

}

return t;

}

}



Final Examination Login: Initials: 18

11. [6 points] We wish to simulate an elevator in a building with floors numbered 1 to a
parameter N , inclusive. If N is 10, for example, we create our elevator simulator with a
statement of the form

Elevator e = new Elevator(10);

At any given time, we can inquire as to the current floor with the expression

e.floor();

At any given time, the elevator has a current direction (up or down) and there may be
outstanding requests to stop at various floors. Initially, e.floor() is 1, there are no
requests, and the current direction is up. The elevator accepts floor requests when it is
stopped. The call

e.request(F);

adds a request to stop at floor F, which must be between 1 and N , inclusive; it does
nothing if there is already such a request or it is already stopped at floor F. In response to
the method call

e.move()

the elevator moves to the nearest requested floor in its current direction, if any. If there
are no more requested floors in that direction, but there are floors in the other direction,
it first reverses the current direction and then goes to the nearest requested floor. If there
are no outstanding requests, a call to .move has no effect.

Implement the Elevator class on the next page. It must implement an appropriate
constructor and the public methods should be floor, request, and move. Somewhat
unrealistically, assume the elevator can have a very large number of floors and receive very
large numbers of requests. The reference material at the front of the exam contains a
partial synopsis of the PriorityQueue and Collections classes.



Final Examination Login: Initials: 19

import java.util.PriorityQueue;

import static java.util.Collections.reverseOrder;



Final Examination Login: Initials: 20


