
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS61B P. N. Hilfinger
Fall 2016

Test #1 (revised)

READ THIS PAGE FIRST. Please do not discuss this exam with people who haven’t taken
it. Your exam should contain problems on 17 pages. Officially, it is worth 17 points (out
of a total of 200).

This is an open-book test. You have 110 minutes to complete it. You may consult any
books, notes, or other non-responsive objects available to you. You may use any program
text supplied in lectures, problem sets, or solutions. Please write your answers in the spaces
provided in the test. Make sure to put your name, login, and TA in the space provided
below. Put your login and initials clearly on each page of this test and on any additional
sheets of paper you use for your answers.

Be warned: my tests are known to cause panic. Fortunately, this reputation is entirely
unjustified. Just read all the questions carefully to begin with, and first try to answer
those parts about which you feel most confident. Do not be alarmed if some of the answers
are obvious. Should you feel an attack of anxiety coming on, feel free to jump up and run
around the outside of the building once or twice.

Your name: Login:

Login of person to your Left: Right:

Discussion TA:

1

Test #1 Login: Initials: 2

Reference Material.

/* arraycopy(FROM_ARR, FROM_INDEX, TO_ARR, TO_INDEX, LENGTH) */

import static java.lang.System.arraycopy;

public class IntList {

/** First element of list. */

public int head;

/** Remaining elements of list. */

public IntList tail;

/** A List with head HEAD0 and tail TAIL0. */

public IntList(int head0, IntList tail0)

{ head = head0; tail = tail0; }

/** A List with null tail, and head = 0. */

public IntList() { this(0, null); }

/** Returns a new IntList containing the ints in ARGS. */

public static IntList list(Integer ... args) {

// Implementation not shown

}

/** Returns true iff L (together with the items reachable from it) is an

* IntList with the same items as this list in the same order. */

@Override

public boolean equals(Object L) {

// Implementation not shown

}

/** Return the length of the non-circular list headed by L. */

@Override

public int size() {

// Implementation not shown

}

}

Test #1 Login: Initials: 3

1. [3 points] For the following code snippets, fill in the box and pointer diagrams to show
the variables and objects created and their contents, using the empty boxes provided.
The double boxes represent IntList objects (see definition on page 2), with the left box
containing the head field. Show also any output produced. You may not need all the boxes
or output lines provided.

(a) IntList a = IntList.list(6, 8, 7); Write Output Here:
a.tail.tail.head = a.tail.head - 10;

IntList b =

new IntList(a.head, a.tail.tail);

b = a.tail;

System.out.println(b.tail.head);

System.out.println(a.head);

a:

b:

Test #1 Login: Initials: 4

(b) The vertical stack of boxes represents an array object.

IntList a = IntList.list(65, 82, 77); Write Output Here:
IntList[] b = new IntList[3];

b[1] = a;

b[0] = a.tail.tail;

b[0].tail = new IntList(66, null);

b[2] = b[0].tail;

System.out.println(b[2].head);

System.out.println((b[1].head + 4));

a:

b:

Test #1 Login: Initials: 5

(c) For this one, fill in the program to match the diagram at the bottom of the page.
This time, it is the horizontal group of boxes that denotes an array object. Not all
blank lines need to be used.

int N = some positive integer (N ≥ 1);
IntList[] A = new IntList[N];

A: • • •

1 2 3 • • • N

Test #1 Login: Initials: 6

2. [3 points] Fill in the method on the next page so that it splits a given 2D array of
ints into left and right 2D arrays non-destructively about the first entry that equals m.
There will always be at least one occurrence of m in each row. The method returns its
result as an array of two 2D arrays. (You might find something helpful on page 2.)

Example:

int[][] A = new int[3][4] {

{ 2, 87, -1, 8 }, /* A[0] */

{ 4, 10, 13, -1 },

{ 43, -1, 234, -1 } /* A[2] */

};

int[][][] R = split(A, -1)

/* R[0] contains R[1] contains

* { { 2, 87 }, { { 8 },

* { 4, 10, 13 }, { },

* { 43 } } { 234, -1 } }

*/

Test #1 Login: Initials: 7

/** Return an array [left, right], where left and right are 2D

* arrays derived from splitting the rows of A around M as described

* in the text. There will always be at least one occurrence of M

* in each row.

*/

public static int[][][] split(int[][] A, int m) {

int h = A.length;

int[][] left = ;

int[][] right = ;

for (int row = 0; row < h; row += 1) {

int splitCol;

;

while () {

;

}

left[row] = ;

right[row] = ;

}

return new int[][][] {left, right};

}

Test #1 Login: Initials: 8

3. [2 points] Correct four lines of mistakes in the code on this and the next page so that
the getWeakestMemeTest unit test on page 9 passes. If a line of code contains a mistake,
correct it on the blank below it. Do not correct lines that are not followed by a blank.
Leave a blank empty if the preceding line of code is correct.

public class Meme {

String meme;

int dankness;

/** DANKNESS must be non-negative. */

public Meme(String name, int dankness) {

meme = name;

dankness = dankness;

}

/** Return the lowest dankness value in MEMES, or 0 if MEMES is null. */

public static int getWeakestMeme(Meme[] memes) {

if (memes == null || memes.length == 0) {

return 0;

}

int minDank = 0;

for (int i = 0; i <= memes.length; i += 1) {

minDank = Math.min(minDank, memes[i].dankness);

}

return minDank;

}

Test #1 Login: Initials: 9

@Test

public void getWeakestMemeTest() {

Meme[] memeStash = new Meme[3];

memeStash[0] = new Meme("Pepe", 4);

memeStash[1] = new Meme("John Cena", 20);

memeStash[2] = new Meme("Harambe", 20160528);

assertEquals(4, getWeakestMeme(memeStash));

Meme[] anotherOne = memeStash;

anotherOne[0] = new Meme("Only Meme", 100);

assertEquals(100, getWeakestMeme(anotherOne));

}

/* Main method omitted */

}

Test #1 Login: Initials: 10

4. [2 points] The BinaryPredicate interface defines a type of object whose method
takes two int values and returns a boolean value.

public interface BinaryPredicate {

boolean test(int a, int b);

}

We say that two values, x and y, satisfy a BinaryPredicate if its test method returns
true when called with the values x and y.

(a) Fill in the definition of the method allPairsCheck to fulfill its comment.

public class Utils {

/** If L contains the values [c0, c1, ..., cn], returns true iff

* every adjacent pair of values in L (c0, c1), (c1, c2), ...

* satifies P. Always true for lists of length 0 or 1. */

public static boolean allPairsCheck(BinaryPredicate p, IntList L) {

for () {

}

}

...

Test #1 Login: Initials: 11

(b) Using allPairsCheck, implement the following method (also in class Utils).

public class Utils { // Continued

...

/** Return true iff the members of L are in non-descending order. */

public static boolean ascending(IntList L) {

return ;

}

/* Define any addition methods or classes you need here. */

}

Test #1 Login: Initials: 12

5. [2 points] Fill in the blanks as indicated.

public class test01 {

public static void multiplyBy3(int[] A){

for(int x: A){

x = x * 3;

}

}

public static void multiplyBy5(int[] A){

int[] temp = new int[A.length];

System.arraycopy(A, 0, temp, 0, A.length);

for(int i = 0; i < temp.length; i += 1){

temp[i] *= 5;

}

A = temp;

}

public static void multiplyBy2(int[] A) {

int[] B = A;

for (int i = 0; i < B.length; i += 1) {

B[i] *= 2;

}

}

public static void swap(int A, int B){

int temp = B;

B = A;

A = temp;

}

Test #1 Login: Initials: 13

public static void main(String[] args){

int[] arr;

arr = new int[]{2, 3, 3, 4};

multiplyBy3(arr);

/* Value of arr: { } */

arr = new int[]{2, 3, 3, 4};

multiplyBy5(arr);

/* Value of arr: { } */

arr = new int[]{2, 3, 3, 4};

multiplyBy2(arr);

/* Value of arr: { } */

int a = 6;

int b = 7;

swap(a, b);

/* Value of a: Value of b: */

}

}

Test #1 Login: Initials: 14

6. [2 points] In the following classes, cross out the lines that will result in an error (either
during compilation or execution). Next to each crossed-out line write a replacement for the
line that correctly carries out the evident intent of the erroneous line. Each replacement
must be a single statement. Change as few lines as possible.

After your corrections, what is printed from running java P2.C5?

package P1; Write Output Here:
public class C1 {

private int a;

int b;

public static int c() {

return 11;

}

public void setA(int v) { a = v; }

public void setB(int v) { b = v; }

public int getA() { return a; }

public int getB() { return b; }

@Override

public String toString() {

return a + " " + getB() + " " + c();

}

}

--

package P1;

public class C2 extends C1 {

public C2() { }

public C2(int a, int b) {

this.a = a;

this.b = b;

}

public static int c() {

return 12;

}

public C1 gen() {

return new C3();

}

}

Test #1 Login: Initials: 15

package P1;

class C3 extends C1 {

private int a = 10;

public String toString() {

return a + " " + getB() + " " + c();

}

}

package P2;

public class C4 extends P1.C2 {

public int getB() {

return 2 * b;

}

public C4(int a, int b) {

this.a = a;

this.b = b;

}

public C4(int v) {

this.a = this.b = v;

}

}

--

package P2;

public class C5 {

public static void main(String... args) {

P1.C1 y = new C1();

P1.C2 x = new C4(13, 14);

P1.C3 q = x.gen();

System.out.println(q + ", " + x);

System.out.println((P1.C2) y);

}

}

Test #1 Login: Initials: 16

7. [1 point] If the earth were a 100-dimensional hypersphere with radius 4000 miles
rather than a three-dimensional sphere of that radius, what fraction of its volume would
be within 40 miles of its surface?

8. [3 points] Fill in the following swapHalves method so that it destructively swaps the
first and last halves of an IntList. If the list has an odd number of elements, the second
part is one longer than the first. Examples:

swapHalves(IntList.list(1, 2, 3, 4)).equals(IntList.list(3, 4, 1, 2))

swapHalves(IntList.list(1, 2, 3, 4, 5)).equals(IntList.list(3, 4, 5, 1, 2))

Your method must not create new IntList objects and must not modify the .head fields
of any objects. You may not need all lines.

Test #1 Login: Initials: 17

/** Destructively swap the first and last halves of the list headed by

* L and return the resulting list. When a list has an odd length,

* its first part is taken to be one shorter than its last. */

IntList swapHalves(IntList L) {

if () {

return ;

}

int N = L.size();

IntList p, result;

for (int k =) {

}

result = ;

for () {

}

return result;

}

