
Recreation

divided by 9 when a certain one of its digits is deleted,
resulting number is again divisible by 9.

actually dividing the resulting number by 9 results in
another digit.

integers satisfying the conditions of this problem.

22:18:29 2021 CS61B: Lecture #11 1

Lecture #11: Examples: Comparable & Reader +
Some Features Supporting Abstraction

22:18:29 2021 CS61B: Lecture #11 2

Comparable

• library provides an interface to describe Objects that have
order on them, such as String, Integer, BigInteger and
:

interface Comparable { // For now, the Java 1.4 version

Returns value <0, == 0, or > 0 depending on whether THIS is

==, or > OBJ. Exception if OBJ not of compatible type. */

compareTo(Object obj);

• in a general-purpose max function:

largest value in array A, or null if A empty. */

static Comparable max(Comparable[] A) {

(A.length == 0) return null;

Comparable result; result = A[0];

i = 1; i < A.length; i += 1)

(result.compareTo(A[i]) < 0) result = A[i];

result;

• will return maximum value in S if S is an array of Strings,
other kind of Object that implements Comparable.

22:18:29 2021 CS61B: Lecture #11 3

Examples: Implementing Comparable

representing a sequence of ints. */

IntSequence implements Comparable {

int[] myValues;

int myCount;

int get(int k) { return myValues[k]; }

int compareTo(Object obj) {

IntSequence x = (IntSequence) obj; // Blows up if obj not an IntSequence

int i = 0; i < myCount && i < x.myCount; i += 1) {

(myValues[i] < x.myValues[i]) {

return -1;

else if (myValues[i] > x.myValues[i]) {

return 1;

myCount - x.myCount; // <0 iff myCount < x.myCount

22:18:29 2021 CS61B: Lecture #11 4

Implementing Comparable II

• possible to add an interface retroactively.

• IntSequence did not implement Comparable, but did implement
(without @Override), we could write

ComparableIntSequence extends IntSequence implements Comparable {

• then “match up” the compareTo in IntSequence with that
Comparable.

22:18:29 2021 CS61B: Lecture #11 5

Java Generics (I)

• shown you the old Java 1.4 Comparable. The current version
newer feature: Java generic types:

interface Comparable<T> {
compareTo(T x);

• like a formal parameter in a method, except that its
type.

• IntSequence (no casting needed):

IntSequence implements Comparable<IntSequence> {

Override

int compareTo(IntSequence x) {

(int i = 0; i < myCount && i < x.myCount; i += 1) {

if (myValues[i] < x.myValues[i]) ...

return myCount - x.myCount;

22:18:29 2021 CS61B: Lecture #11 6



Example: Readers

• java.io.Reader abstracts sources of characters.

• present a revisionist version (not the real thing):

interface Reader { // Real java.io.Reader is abstract class

Release this stream: further reads are illegal */

close();

as many characters as possible, up to LEN,

BUF[OFF], BUF[OFF+1],..., and return the

number read, or -1 if at end-of-stream. */

(char[] buf, int off, int len);

Short for read(BUF, 0, BUF.length). */

(char[] buf);

and return single character, or -1 at end-of-stream. */

();

• new Reader(); it’s abstract. So what good is it?

22:18:29 2021 CS61B: Lecture #11 7

Generic Partial Implementation

• to their specifications, some of Reader’s methods are re-

• express this with a partial implementation, which leaves key
unimplemented and provides default bodies for others.

• still abstract: can’t use new on it.

partial implementation of Reader. Concrete

implementations MUST override close and read(,,).

MAY override the other read methods for speed. */

abstract class AbstractReader implements Reader {

two lines are redundant.

abstract void close();

abstract int read(char[] buf, int off, int len);

int read(char[] buf) { return read(buf,0,buf.length); }

int read() { return (read(buf1) == -1) ? -1 : buf1[0]; }

char[] buf1 = new char[1];

22:18:29 2021 CS61B: Lecture #11 8

Implementation of Reader: StringReader

StringReader reads characters from a String:

StringReader extends AbstractReader {

String str;

k;

Reader that delivers the characters in STR. */

StringReader(String s) {

s; k = 0;

close() {

null;

read(char[] buf, int off, int len) {

== str.length())

return -1;

Math.min(len, str.length() - k);

str.getChars(k, k+len, buf, off);

len;

len;

22:18:29 2021 CS61B: Lecture #11 9

Using Reader

method, which counts words:
number of words in R, where a "word" is

sequence of non-whitespace characters. */

r) {

count;

count = 0;

{

r.read();

-1) return count;

(Character.isWhitespace((char) c0)

!Character.isWhitespace((char) c))

count += 1;

works for any Reader:

StringReader(someText)) // # words in someText

InputStreamReader(System.in)) // # words in standard input

FileReader("foo.txt")) // # words in file foo.txt.

22:18:29 2021 CS61B: Lecture #11 10

How It Fits Together

read(b,o,l)

read(b)

read()

...

Reader

read(b,o,l)

read(b)

read()

...

StringReader

read(b,o,l)

read(b)

read()

...

AbstractReader

extendsimplements

implements

calls
which

is really

inherited

from

calls

inherited

from

calls

overrides

Interface Concrete Class Abstract Template

22:18:29 2021 CS61B: Lecture #11 11

Lessons

• interface class served as a specification for a whole set
readers.

• most client methods that deal with Readers, like wc, will
type Reader for the formal parameters, not a specific kind

thus assuming as little as possible.

• when a client creates a new Reader will it get specific about
subtype of Reader it needs.

• client’s methods are as widely applicable as possible.

• AbstractReader is a tool for implementors of non-abstract
classes, and not used by clients.

• library is not pure. E.g., AbstractReader is really just
Reader and there is no interface. In this example, we saw

should have done!

• Comparable interface allows definition of functions that de-
on a limited subset of the properties (methods) of their
(such as “must have a compareTo method”).

22:18:29 2021 CS61B: Lecture #11 12



More OOP Features Supporting Abstraction

22:18:29 2021 CS61B: Lecture #11 13

Parent Constructors

• notes #7, talked about how Java allows implementer of a
control all manipulation of objects of that class.

• particular, this means that Java gives the constructor of a class
shot at each new object.

• class extends another, there are two constructors—one
parent type and one for the new (child) type.

• case, Java guarantees that one of the parent’s constructors
first. In effect, there is a call to a parent constructor at

beginning of every one of the child’s constructors.

• call the parent’s constructor yourself explicitly.

{ class Rectangle extends Figure {

Figure(int sides) { public Rectangle() {

super(4);

}...

}

22:18:29 2021 CS61B: Lecture #11 14

Default Constructors

• default, Java calls the “default” (parameterless) constructor if
explicit constructor called.

*/ /* Is equivalent to... */

extends Rectangle { class Thingy extends Rectangle {

Thingy() { public Thingy() {

setThingsUp(); super();

setThingsUp();

}

}

• creates a default constructor for a class if no other con-
defined for the class.

*/ /* Is equivalent to... */ /* And thus to... */

{ class Crate { class Crate {

public Crate() { public Crate() {

} super();

} }

}

22:18:29 2021 CS61B: Lecture #11 15

What Happens Here?

class Rectangle extends Figure {

int sides) { }

22:18:29 2021 CS61B: Lecture #11 16

What Happens Here?

class Rectangle extends Figure {

int sides) { }

Compiler error. Rectangle has an implicit constructor that
the default construvtor in Figure, but there isn’t one.

22:18:29 2021 CS61B: Lecture #11 17

Using an Overridden Method

• that you wish to add to the action defined by a superclass’s
rather than to completely override it.

• overriding method can refer to overridden methods by using
special prefix super.

• example, you have a class with expensive functions, and you’d
memoizing version of the class.

ComputeHard {

cogitate(String x, int y) { ... }

ComputeLazily extends ComputeHard {

cogitate(String x, int y) {

don’t already have answer for this x and y) {

result = super.cogitate(x, y); // <<< Calls overridden function

memoize (save) result;
return result;

memoized result;

22:18:29 2021 CS61B: Lecture #11 18


	Recreation
	CS61B Lecture #11: Examples: Comparable & Reader + Some Features Supporting Abstraction
	Comparable
	Examples: Implementing Comparable
	Implementing Comparable II
	Java Generics (I)
	Example: Readers
	Generic Partial Implementation
	Implementation of Reader: StringReader
	Using Reader
	How It Fits Together
	Lessons
	More OOP Features Supporting Abstraction
	Parent Constructors
	Default Constructors
	What Happens Here?
	Using an Overridden Method 

