Trick: Delegation and Wrappers

ppropriate to use inheritance to extend something.

ives example of a TrReader, which contains another
Vhich it delegates the task of actually going out and
acters.

mple: a class that instruments objects:

e { class Monitor implements Storage {

£ x); int gets, puts;

private Storage store;

Monitor(Storage x) { store = x; gets = puts = 0; }
public void put(Object x) { puts += 1; store.put(x); }
public Object get() { gets += 1; return store.get(); }

// INSTRUMENTED

thing ; Monitor S = new Monitor(something):
£(8);
System.out.println(S.gets + " gets");

led a wrapper class.

05:30 2021 CS61B: Lecture #12 2

Catching Exceptions

ses each active method call to terminate abruptly, until
we come to a try block.

tions and do something corrective with try:

‘f that might throw exception;
. (SomeException e) {
omething reasonable;

. (SomeOtherException e) {
omething else reasonable;

ith life;

Ixception exception occurs during "Stuff..."” and is not
‘e, we immediately "do something reasonable” and then
ife."

string (if any) available as e.getMessage() for error
d the like.

105:30 2021 CS61B: Lecture #12 4

Catching Exceptions, III

latively new shorthand for handling multiple exceptions
y

hat might throw IllegalArgumentException
[llegalStateException;
IllegalArgumentException|IllegalStateException ex) {
exception;

105:30 2021 CS61B: Lecture #12 6

ure #12: Delegation, Exceptions, Assorted
Features

es.

05:30 2021 CS61B: Lecture #12 1

What to do About Errors?

t of any production program devoted to detecting and
o errors.

are external (bad input, network failures); others are
Irs in programs.

d has stated precondition, it's the client’s job to comply.
2 to detect and report client's errors.

throw exception objects, typically:

ew SomeException (optional description) ;

re objects. By convention, they are given two constructors:
arguments, and one with a descriptive string argument
xception stores).

throws some exceptions implicitly, as when you dereference
*, or exceed an array bound.

105:30 2021 CS61B: Lecture #12 3

Catching Exceptions, II

rtype as the parameter type in a catch clause will catch
of that exception as well:

that might throw a FileNotFoundException or a
falformedURLException ;

I0Exception ex) {

e any kind of IOException;

ytFoundException and MalformedURLException both inherit
zption, the catch handles both cases.

eans that multiple catch clauses can apply; Java takes

it's nice to be more specific (concrete) about exception
possible.

», our style checker will therefore balk at the use of
tuntimeException, Error, and Throwable as exception

105:30 2021 CS61B: Lecture #12 5




Unchecked Exceptions

er errors: many library functions throw
rgumentException when one fails to meet a precondition.

ttected by the basic Java system: e.g.,

ng x.y when x is null,

ng A[i] when i is out of bounds,

ng (String) x whenx turns out not to point to a String.
tastrophic failures, such as running out of memory.

wn anywhere at any time with no special preparation.

Good Practice

tions rather than using print statements and System.exit

esponse to a problem may depend on the caller, not just
*e problem arises.

~ an exception when programmer violates preconditions.

good idea to throw an exception rather than let bad
t a data structure.

document when methods throw exceptions.

formation about the cause of exceptional condition, put
<ception rather than into some global variable:

Static importing

ily get tired of writing System.out and Math.sqrt. Do
zed to be reminded with each use that out is in the
iystem package and that sqrt is in the Math package

es are of static members. A feature of Java allows you
e such references:

tatic java.lang.System.out; means “within this file,
je out as an abbreviation for System. out.

tatic java.lang.System.*; means "within this file, you
ly static member name in System without mentioning the

hrown by throw command must be a subtype of Throwable
e).
tlares several such subtypes, among them

ed for serious, unrecoverable errors;
n, intended for all other exceptions;

kception, a subtype of Exception intended mostly for
ing errors too common to be worth declaring.

exceptions are all subtypes of one of these.
of Error or RuntimeException is said to be unchecked.

teption types are checked.

05:30 2021 CS61B: Lecture #12 7

indicate exceptional circumstances that are not necessarily
errors. Examples:

1g to open a file that does not exist.
utput errors on a file.
an interrupt.

zd exception that can occur inside a method must either
y atry statement, or reported in the method's declaration.

throws IOException, InterruptedException { ... }

wyRead (or something it calls) might throw I0Exception
tedException.

sigh: Why did Java make the following illegal?

{ class Child extends Parent {
.} void f () throws IOException { ... }

}

105:30 2021 CS61B: Lecture #12 9

xtends Exception { try {... s only an abbreviation. No special access.
List errs; } catch (MyBad e) { . .
ist nums) { errs=nums; } ... e.errs ... I't do this for classes in the anonymous package.
}
05:30 2021 CS61B: Lecture #12 8 105:30 2021 CS61B: Lecture #1210 105:30 2021 CS61B: Lecture #1212
ceptions: Checked vs. Unchecked Checked Exceptions Importing

1.util.List every fime you mean List or
‘egex.Pattern every time you mean Pattern is annoying.

of the import clause at the beginning of a source file is
breviations:

ava.util.List; means "within this file, you canuse List
~eviation for java.util.List.

ava.util.*; means “within this file, you can use any
zin the package java.util without mentioning the package.”

)es not grant any special access; it only allows abbreviation.

ur program always contains import java.lang.*;

105:30 2021 CS61B: Lecture #12 11




Inner Classes

owed a static nested class. Static nested classes are
other, except that they can be private or protected,
see private variables of the enclosing class.

ested classes are called inner classes.

ire (and syntax is odd); used when each instance of the
is created by and naturally associated with an instance
ning class, like Banks and Accounts:

unt account
unt account

| Bank e = new Bank(...);
d connectTo(...) {...} | Bank.Account p0 =
s Account { | e.new Account(...);
id call(int number) { | Bank.Account pl =

his.connectTo(...); ... e.new Account(...);
.this means "the bank that

I
|
fted me" |
|

05:30 2021 CS61B: Lecture #1214

Nesting Classes

t makes sense to nest one class in another. The nested

nly in the implementation of the other, or
tually “subservient” to the other

classes can help avoid name clashes or "pollution of the
with names that will never be used anywhere else.

lynomials can be thought of as sequences of terms.
meaningful outside of Polynomials, so you might define
present a ferm inside the Polynomial class:

ial {
olynomials

m[] terms;
tic class Term {

05:30 2021 CS61B: Lecture #1213

Type testing: instanceof

2 to ask about the dynamic type of something:

ker (Reader r) {
nceof TrReader)
t.print ("Translated characters: ");

t.print ("Characters: ");

's is seldom what you want to do. Why do this:

eof StringReader)
[StringReader) x;
stanceof FileReader)
[FileReader) x;

1 just call x.read O?!
se instance methods rather than instanceof.

105:30 2021 CS61B: Lecture #1215




	CS61B Lecture #12: Delegation, Exceptions, Assorted Features
	Trick: Delegation and Wrappers
	What to do About Errors?
	Catching Exceptions
	Catching Exceptions, II
	Catching Exceptions, III
	Exceptions: Checked vs. Unchecked
	Unchecked Exceptions
	Checked Exceptions
	Good Practice
	Importing
	Static importing
	Nesting Classes
	Inner Classes
	Type testing: instanceof

