
Lecture #12: Delegation, Exceptions, Assorted
Features

•
•

•
• classes.

• testing.

14:05:30 2021 CS61B: Lecture #12 1

Trick: Delegation and Wrappers

• appropriate to use inheritance to extend something.

• gives example of a TrReader, which contains another
which it delegates the task of actually going out and

characters.

• example: a class that instruments objects:

Storage {

Object x);

class Monitor implements Storage {

int gets, puts;

private Storage store;

Monitor(Storage x) { store = x; gets = puts = 0; }

public void put(Object x) { puts += 1; store.put(x); }

public Object get() { gets += 1; return store.get(); }

}

something;
// INSTRUMENTED

Monitor S = new Monitor(something);
f(S);

System.out.println(S.gets + " gets");

called a wrapper class.

14:05:30 2021 CS61B: Lecture #12 2

What to do About Errors?

• amount of any production program devoted to detecting and
to errors.

• errors are external (bad input, network failures); others are
errors in programs.

• method has stated precondition, it’s the client’s job to comply.

• nice to detect and report client’s errors.

• we throw exception objects, typically:

new SomeException(optional description);

• are objects. By convention, they are given two constructors:
no arguments, and one with a descriptive string argument
exception stores).

• system throws some exceptions implicitly, as when you dereference
pointer, or exceed an array bound.

14:05:30 2021 CS61B: Lecture #12 3

Catching Exceptions

• causes each active method call to terminate abruptly, until
unless) we come to a try block.

• exceptions and do something corrective with try:

Stuff that might throw exception;
catch (SomeException e) {
Do something reasonable;

catch (SomeOtherException e) {
Do something else reasonable;

with life;
• SomeException exception occurs during “Stuff. . . ” and is not

there, we immediately “do something reasonable” and then
life.”

• Descriptive string (if any) available as e.getMessage() for error
and the like.

14:05:30 2021 CS61B: Lecture #12 4

Catching Exceptions, II

• supertype as the parameter type in a catch clause will catch
subtype of that exception as well:

Code that might throw a FileNotFoundException or a
MalformedURLException ;

(IOException ex) {

Handle any kind of IOException;
• FileNotFoundException and MalformedURLException both inherit

IOException, the catch handles both cases.

• means that multiple catch clauses can apply; Java takes

• Stylistically, it’s nice to be more specific (concrete) about exception
where possible.

• particular, our style checker will therefore balk at the use of
, RuntimeException, Error, and Throwable as exception

supertypes.

14:05:30 2021 CS61B: Lecture #12 5

Catching Exceptions, III

• relatively new shorthand for handling multiple exceptions
way:

that might throw IllegalArgumentException
or IllegalStateException;
(IllegalArgumentException|IllegalStateException ex) {

Handle exception;

14:05:30 2021 CS61B: Lecture #12 6



Exceptions: Checked vs. Unchecked

• thrown by throw command must be a subtype of Throwable
java.lang).

• pre-declares several such subtypes, among them

used for serious, unrecoverable errors;

Exception, intended for all other exceptions;

RuntimeException, a subtype of Exception intended mostly for
programming errors too common to be worth declaring.

• Pre-declared exceptions are all subtypes of one of these.

• subtype of Error or RuntimeException is said to be unchecked.

• exception types are checked.

14:05:30 2021 CS61B: Lecture #12 7

Unchecked Exceptions

• for

Programmer errors: many library functions throw
IllegalArgumentExceptionwhen one fails to meet a precondition.

detected by the basic Java system: e.g.,

∗ Executing x.y when x is null,

∗ Executing A[i] when i is out of bounds,

∗ Executing (String) x when x turns out not to point to a String.

catastrophic failures, such as running out of memory.

• thrown anywhere at any time with no special preparation.

14:05:30 2021 CS61B: Lecture #12 8

Checked Exceptions

• to indicate exceptional circumstances that are not necessarily
programmer errors. Examples:

Attempting to open a file that does not exist.

or output errors on a file.

Receiving an interrupt.

• checked exception that can occur inside a method must either
by a try statement, or reported in the method’s declaration.

• example,

() throws IOException, InterruptedException { ... }

that myRead (or something it calls) might throw IOException

InterruptedException.

• Design: Why did Java make the following illegal?

{ class Child extends Parent {

{ ... } void f () throws IOException { ... }

}

14:05:30 2021 CS61B: Lecture #12 9

Good Practice

• exceptions rather than using print statements and System.exit
everywhere,

• response to a problem may depend on the caller, not just
where problem arises.

• throw an exception when programmer violates preconditions.

• Particularly good idea to throw an exception rather than let bad
corrupt a data structure.

• to document when methods throw exceptions.

• information about the cause of exceptional condition, put
exception rather than into some global variable:

extends Exception { try {...

IntList errs; } catch (MyBad e) {

IntList nums) { errs=nums; } ... e.errs ...

}

14:05:30 2021 CS61B: Lecture #12 10

Importing

• java.util.List every time you mean List or
java.lang.regex.Pattern every time you mean Pattern is annoying.

• purpose of the import clause at the beginning of a source file is
abbreviations:

java.util.List;means “within this file, you can use List
abbreviation for java.util.List.

java.util.*; means “within this file, you can use any
name in the package java.util without mentioning the package.”

• does not grant any special access; it only allows abbreviation.

• your program always contains import java.lang.*;

14:05:30 2021 CS61B: Lecture #12 11

Static importing

• easily get tired of writing System.out and Math.sqrt. Do
need to be reminded with each use that out is in the

java.lang.System package and that sqrt is in the Math package

• examples are of static members. A feature of Java allows you
abbreviate such references:

static java.lang.System.out; means “within this file,
use out as an abbreviation for System.out.

static java.lang.System.*;means “within this file, you
any static member name in System without mentioning the

package.

• is only an abbreviation. No special access.

• can’t do this for classes in the anonymous package.

14:05:30 2021 CS61B: Lecture #12 12



Nesting Classes

• Sometimes, it makes sense to nest one class in another. The nested
might

only in the implementation of the other, or

conceptually “subservient” to the other

• such classes can help avoid name clashes or “pollution of the
space” with names that will never be used anywhere else.

• Polynomials can be thought of as sequences of terms.
aren’t meaningful outside of Polynomials, so you might define

represent a term inside the Polynomial class:

Polynomial {

on polynomials

Term[] terms;

static class Term {

14:05:30 2021 CS61B: Lecture #12 13

Inner Classes

• showed a static nested class. Static nested classes are
any other, except that they can be private or protected,
can see private variables of the enclosing class.

• nested classes are called inner classes.

• rare (and syntax is odd); used when each instance of the
class is created by and naturally associated with an instance
containing class, like Banks and Accounts:

Bank
account

account
Bank

account

account

{ | Bank e = new Bank(...);

void connectTo(...) {...} | Bank.Account p0 =

class Account { | e.new Account(...);

void call(int number) { | Bank.Account p1 =

this.connectTo(...); ... | e.new Account(...);

Bank.this means "the bank that |

created me" |

|

14:05:30 2021 CS61B: Lecture #12 14

Type testing: instanceof

• possible to ask about the dynamic type of something:

typeChecker(Reader r) {

instanceof TrReader)

System.out.print("Translated characters: ");

System.out.print("Characters: ");

• this is seldom what you want to do. Why do this:

instanceof StringReader)

(StringReader) x;

instanceof FileReader)

(FileReader) x;

can just call x.read()?!

• general, use instance methods rather than instanceof.

14:05:30 2021 CS61B: Lecture #12 15


	CS61B Lecture #12: Delegation, Exceptions, Assorted Features
	Trick: Delegation and Wrappers
	What to do About Errors?
	Catching Exceptions
	Catching Exceptions, II
	Catching Exceptions, III
	Exceptions: Checked vs. Unchecked
	Unchecked Exceptions
	Checked Exceptions
	Good Practice
	Importing
	Static importing
	Nesting Classes
	Inner Classes
	Type testing: instanceof

