
CS61B Lecture #14: Integers

Announcements:

• checkpoint due tonight (don’t worry; it’s easy).

• gitbug (see the Gitbugs tab on the website) to submit
for help debugging projects, homeworks, etc. This can be a
more efficient than office hours or Piazza. In particular,
make sure we have all the information needed to help you.

• also use labs to ask for the same sort of help you might use
hours for.

19:01:31 2021 CS61B: Lecture #14 1

Integer Types and Literals

Bits Signed? Literals
8 Yes Cast from int: (byte) 3
16 Yes None. Cast from int: (short) 4096

16 No

’a’ // (char) 97

’\n’ // newline ((char) 10)

’\t’ // tab ((char) 8)

’\\’ // backslash

’A’, ’\101’, ’\u0041’ // == (char) 65

32 Yes
123

0100 // Octal for 64

0x3f, 0xffffffff // Hexadecimal 63, -1 (!)

64 Yes
123L, 01000L, 0x3fL

1234567891011L

• numerals are just negated (positive) literals.

• means that there are 2N integers in the domain of the type:

signed, range of values is −2N−1 .. 2N−1 − 1.

unsigned, only non-negative numbers, and range is 0..2N − 1.

19:01:31 2021 CS61B: Lecture #14 2

Overflow

• How do we handle overflow, such as occurs in 10000*10000*10000?

• languages throw an exception (Ada), some give undefined re-
C++)

• defines the result of any arithmetic operation or conversion
types to “wrap around”—modular arithmetic.

• the “next number” after the largest in an integer type is
smallest (like “clock arithmetic”).

• 128 == (byte) (127+1) == (byte) -128

• general,

result of some arithmetic subexpression is supposed to
type T , an n-bit integer type,

compute the real (mathematical) value, x,

yield a number, x′, that is in the range of T , and that is
equivalent to x modulo 2n.

means that x− x′ is a multiple of 2n.)

19:01:31 2021 CS61B: Lecture #14 3

Modular Arithmetic

• b (mod n) to mean that a− b = kn for some integer k.

• binary operation a mod n as the value b such that a ≡ b (mod n)
< n for n > 0. (Can be extended to n ≤ 0 as well, but

bother with that here.) This is not the same as Java’s %

• facts: (Here, let a′ denote a mod n).

a′′ = a′

a′ + b′′ = (a′ + b)′ = a + b′

(a′ − b′)′ = (a′ + (−b)′)′ = (a− b)′

(a′ · b′)′ = a′ · b′ = a · b′

(ak)′ = ((a′)k)′ = (a · (ak−1)′)′, for k > 0.

19:01:31 2021 CS61B: Lecture #14 4

Modular Arithmetic: Examples

• (64*8) yields 0, since 512− 0 = 2× 28.

• (64*2) and (byte) (127+1) yield -128, since 128− (−128) =

• (101*99) yields 15, since 9999− 15 = 39× ·28.

• (-30*13) yields 122, since −390− 122 = −2× 28.
• (-1) yields 216 − 1, since −1− (216 − 1) = −1× 216.

19:01:31 2021 CS61B: Lecture #14 5

Modular Arithmetic and Bits

• around?

• definition is the natural one for a machine that uses binary
arithmetic.

• example, consider bytes (8 bits):

Decimal Binary

101 1100101

×99 1100011

9999 100111|00001111

− 9984 100111|00000000

15 00001111

• general, bit n, counting from 0 at the right, corresponds to 2n.

• to the left of the vertical bars therefore represent multi-
256.

• throwing them away is the same as arithmetic modulo 256.

19:01:31 2021 CS61B: Lecture #14 6



Negative numbers

• representation for -1?

1 000000012
+ −1 111111112
= 0 1|000000002

bits in a byte, so bit 8 falls off, leaving 0.

• truncated bit is in the 28 place, so throwing it away gives an
number modulo 28. All bits to the left of it are also divisible

• unsigned types (char), arithmetic is the same, but we choose to
only non-negative numbers modulo 216:

1 00000000000000012
+ 216 − 1 11111111111111112
= 216 + 0 1|00000000000000002

19:01:31 2021 CS61B: Lecture #14 7

Conversion

• Java will silently convert from one type to another if this
sense and no information is lost from value.

• Otherwise, cast explicitly, as in (byte) x.

• given

aByte; char aChar; short aShort; int anInt; long aLong;

aByte; anInt = aByte; anInt = aShort;

aChar; aLong = anInt;

OK, might lose information:

aLong; aByte = anInt; aChar = anInt; aShort = anInt;

aChar; aChar = aShort; aChar = aByte;

special dispensation:

13; // 13 is compile-time constant

12+100 // 112 is compile-time constant

19:01:31 2021 CS61B: Lecture #14 8

Promotion

• operations (+, *, . . . ) promote operands as needed.

• is just implicit conversion.

• integer operations,

operand is long, promote both to long.

otherwise promote both to int.

•

3 == (int) aByte + 3 // Type int

3 == aLong + (long) 3 // Type long

== (int) ’A’ + 2 // Type int

aByte + 1 // ILLEGAL (why?)

• fortunately,

1; // Defined as aByte = (byte) (aByte+1)

• example:

Assume aChar is an upper-case letter

lowerCaseChar = (char) (’a’ + aChar - ’A’); // why cast?

19:01:31 2021 CS61B: Lecture #14 9

Bit twiddling

• C, C++) allow for handling integer types as sequences of
“conversion to bits” needed: they already are.

• Operations and their uses:

Set Flip Flip all
00101100 00101100

| 10100111 ^ 10100111 ~ 10100111

10101111 10001011 01011000

•

Left Arithmetic Right Logical Right
10101101 << 3 10101101 >> 3 10101100 >>> 3

01101000 11110101 00010101
•

(-1) >>> 29?
<< n?
>> n?

x >>> 3) & ((1<<5)-1)?

19:01:31 2021 CS61B: Lecture #14 10

Bit twiddling

• C, C++) allow for handling integer types as sequences of
“conversion to bits” needed: they already are.

• Operations and their uses:

Set Flip Flip all
00101100 00101100

| 10100111 ^ 10100111 ~ 10100111

10101111 10001011 01011000
•

Left Arithmetic Right Logical Right
10101101 << 3 10101101 >> 3 10101100 >>> 3

01101000 11110101 00010101

•

(-1) >>> 29? = 7.
<< n?
>> n?

x >>> 3) & ((1<<5)-1)?

19:01:31 2021 CS61B: Lecture #14 11

Bit twiddling

• C, C++) allow for handling integer types as sequences of
“conversion to bits” needed: they already are.

• Operations and their uses:

Set Flip Flip all
00101100 00101100

| 10100111 ^ 10100111 ~ 10100111

10101111 10001011 01011000

•

Left Arithmetic Right Logical Right
10101101 << 3 10101101 >> 3 10101100 >>> 3

01101000 11110101 00010101

•

(-1) >>> 29? = 7.
<< n? = x · 2n.
>> n?

x >>> 3) & ((1<<5)-1)?

19:01:31 2021 CS61B: Lecture #14 12



Bit twiddling

• C, C++) allow for handling integer types as sequences of
“conversion to bits” needed: they already are.

• Operations and their uses:

Set Flip Flip all
00101100 00101100

| 10100111 ^ 10100111 ~ 10100111

10101111 10001011 01011000

•

Left Arithmetic Right Logical Right
10101101 << 3 10101101 >> 3 10101100 >>> 3

01101000 11110101 00010101

•

(-1) >>> 29? = 7.
<< n? = x · 2n.
>> n? = ⌊x/2n⌋ (i.e., rounded down).

x >>> 3) & ((1<<5)-1)?

19:01:31 2021 CS61B: Lecture #14 13

Bit twiddling

• C, C++) allow for handling integer types as sequences of
“conversion to bits” needed: they already are.

• Operations and their uses:

Set Flip Flip all
00101100 00101100

| 10100111 ^ 10100111 ~ 10100111

10101111 10001011 01011000

•

Left Arithmetic Right Logical Right
10101101 << 3 10101101 >> 3 10101100 >>> 3

01101000 11110101 00010101

•

(-1) >>> 29? = 7.
<< n? = x · 2n.
>> n? = ⌊x/2n⌋ (i.e., rounded down).

x >>> 3) & ((1<<5)-1)? 5-bit integer, bits 3–7 of x.

19:01:31 2021 CS61B: Lecture #14 14


	CS61B Lecture #14: Integers
	Integer Types and Literals
	Overflow
	Modular Arithmetic
	Modular Arithmetic: Examples
	Modular Arithmetic and Bits
	Negative numbers
	Conversion
	Promotion
	Bit twiddling

