What Are the Questions?

cipal concern throughout engineering:

eer is someone who can do for a dime what any fool
a dollar.”

n

al cost (for programs, time to run, space requirements).
ent costs: How much engineering time? When delivered?
ice costs: Upgrades, bug fixes.
failure: How robust? How safe?

am fast enough? Depends on:
purpose;

jnput data.

ace (memory, disk space)?
lends on what input data.

rale, as input gets big?

33:24 2021 CS61B: Lecture #16 2

Cost Measures (Time)

r execution time

o this at home:

3 java FindPrimes 1000

2s: easy to measure, meaning is obvious.

ite where time is critical (real-time systems, e.g.).

ages: applies only to specific data set, compiler, machine,

tement counts of # of times statements are executed:

2s: more general (not sensitive to speed of machine).
ages: doesn't tell you actual time, still applies only to
ata sets.

zcution times:

ormulas for execution times as functions of input size.
2s: applies to all inputs, makes scaling clear.

age: practical formula must be approximate, may tell
» about actual time.

133:24 2021 CS61B: Lecture #16 4

Handy Tool: Order Notation

try to produce specific functions that specify size, but
fes of functions with similarly behaved magnitudes.

nething like " f is bounded by g if it is in ¢'s family."
tion g(z), the functions 2¢(z), 0.5g(x), or for any K > 0,
ave the same “shape”. So put all of them into ¢'s family.

\ h(z) such that h(z) = K - g(z) for x > M (for some

' has ¢'s shape “except for small values." So put all of
‘amily.

iits, throw in all functions whose absolute value is everywhere
ber of g's family. Call this set O(g) or O(g(n)).

r limits, throw in all functions whose absolute value is
> some member of g's family. Call this set Q(g).

1€ O(g) = O(g) N (g)—the set of functions bracketed
by two members of ¢'s family.

133:24 2021 CS61B: Lecture #16 6

[S61B Lecture #16: Complexity

33:24 2021 CS61B: Lecture #16 1

Enlightening Example

| a text corpus (say 10° bytes or so), and find and print
:quently used words, together with counts of how often

nuth): Heavy-Duty data structures

implementation, randomized placement, pointers galore,
iges long.

youg McIlroy): UNIX shell script:
>[:alpha:]1’ *[\n*]’ < FILE | \

\
-k 1,1 |\

‘ter?
h faster,
1ok 5 minutes to write and processes 16B in =~ 256 sec.

r cases, almost anything will do: Keep It Simple.
133:24 2021 CS61B: Lecture #16 3

Asymptotic Cost

zcution time lets us see shape of the cost function.

2 approximating anyway, pointless to be precise about
Js:

on small inputs:

ays pre-calculate some results.

‘or small inputs not usually important.

more interested in asymptotic behavior as input size
s very large.

factors (as in “off by factor of 2"):
langing machines causes constant-factor change.

~act away from (i.e., ignore) these things?

133:24 2021 CS61B: Lecture #16 5

Big Omega

y bounding from below:
M=1 .

b ig(x) aslongas x> 1,
g's "bounded-below family,” written

f(z) € Ag(x)),

gh f(z) < g(x) everywhere.

33:24 2021

CS61B: Lecture #16 8

de: Various Mathematical Pedantry
if T am going to talk about O(-), €)(-) and O(-) as sets of
really should write, for example,

f€O0(g) insteadof f(z) € O(g(x))

z) € O(g(x)) is short for A z. f(z) € O(\ z. g(z)).

1 notation outside this course, in fact, is f(z) = O(g(z)),
ly, I think that's a serious abuse of notation.

133:24 2021 CS61B: Lecture #16 10

Why It Matters

ientists often talk as if constant factors didn't matter
1e difference of O(N) vs. O(N?).

ey do matter, but at some point, constants always get

NG n nlgn n? n? on
1.4 2 2 4 8 4
2 4 8 16 64 16
2.8 8 24 64 512 256
4 16 64 256 4,096 65, 636
5.7 32 160 1024 32,768 4.2 x 10°
8 64 384 4,096 262,144 1.8 x 10"

11

128

896

16, 384

2.1 x 10°

3.4 x 10%

32 1,024 10,240 1.0 x 10° 1.1 x 10° 1.8 x 10%%8

1024 1.0 x 10% 2.1 x 107 1.1 x 10'2 1.2 x 10'® 6.7 x 10312652
. replace column n® with 10° - n? and it still becomes
y 2",

133:24 2021 CS61B: Lecture #16 12

Big Oh

y bounding from above.
M=1

2g(z) as long as = > 1,
g's "bounded-above family," written
f(z) € O(g(2)),

gh (in this case) f(z) > g(z) everywhere.

33:24 2021

CS61B: Lecture #16 7

Big Theta

previous slides, we not only have f(z) € O(g(x)) and
)

(z) € Qg(x)) and f'(z) € O(g(x)).

marize this all by saying f(z) € O(g(z)) and f'(z) €

133:24 2021 CS61B: Lecture #16 9

How We Use Order Notation

| mathematics, you'll see O(...), efc., used generally to
ds on functions.

'

N

T(N) = @(m)
d prefer to write
) N
m(N) € O(ﬁ)

is the number of primes less than or equal to N.)
ze things like

|=2®+ 22+ 0(x) (or f(z) € 2° + 27 + O(x)),

- f(z) = 2% + 2% + g(x) where g(z) € O(x).

soses, the functions we will be bounding will be cost
Inctions that measure the amount of execution time or
f space required by a program or algorithm.

133:24 2021 CS61B: Lecture #16 11

Using the Notation

order notation for any kind of real-valued function.
hem to describe cost functions. Example:
position of X in list L, or -1 if not found. */

List L, Object X) {

=0; L !'=null; L = L.next, c += 1)
(X.equals(L.head)) return c;
1 -1;

esentative operation: number of .equals tests.

tth of L, then loop does at most N tests: worst-case
sts.

ol # of instructions executed is roughly proportional

Effect of Nested Loops

s often lead to polynomial bounds:

i =0; i < A.length; i += 1)
mt j = 0; j < A.length; j += 1)
(i 1= j && A[i] == A[jD)
return true;

1lse;

1 is O(N?), where N = A.length. Worst-case time is

icient though:

i =0; i < A.length; i += 1)

nt j = i+l; j < A.length; j += 1)
(A[i] == A[j]) return true;

ilse;

Binary Search: Slow Growth

i is an element of S[L .. U]. Assumes
iding order, 0 <= L <= U-1 < S.length. */
jtring X, Stringl[] S, int L, int U) {
return false;

N/2;

: X.compareTo(S[M]);

¢ 0) return isIn(X, S, L, M-1);

rect > 0) return isIn(X, S, M+1, U);
true;

ccase time, C(D), (as measured by # of calls fo . compareTo),
lize2D=U—-L+1.

: S[M] from consideration each time and look at half the
2 D = 2F — 1 for simplicity, so:

0 if D<O,

pblem can you solve in a given time?

ing table, left column shows time in microseconds to
problem as a function of problem size N.

the size of problem that can be solved in a second,
31days), and century, for various relationships between
d and problem size.

size.

t) for Max N Possible in

ze N | 1second 1 hour 1 month 1 century

10300000 101000000000 10810" 101"

10° 3.6-10° 2.7-10" 3.2-101

r 63000 1.3-108 7.4-1010 6.9-10%
1000 60000 1.6 - 106 5.6 - 107
100 1500 14000 150000
20 32 41 51

33:24 2021 CS61B: Lecture #16 13

2 that the worst-case time is O(N?), since N € O(N?)
bounds are loose.

ase time is Q(N), since N € Q(N), but that does not
\e loop always takes time N, or even K - N for some K.

are just saying something about the function that maps
argest possible time required to process any array of

ch as possible about our worst-case time, we should try

ound: in this case, we can: O(N).

nat still tells us nothing about best-case time, which
n we find X at the beginning of the loop. Best-case time

133:24 2021 CS61B: Lecture #16 15

cD) =4, .
worst case, so can also say worst-case time is O(N), ase time is proportional to (D) 1+C(D -1)/2), if D> 0.
f units used to measure. Y =1+14...+1+40
ision (in defn. of O()) fo i s list —14+N-24+...+1=N(N-1)/2€ O(N?) i

rovision (in defn. o -)) To ignore em ist. L =k=Ilg(D+1)€O(lgD
P J a4 ‘ic time unchanged by the constant-factor speed-up). 8l) (g D)

33:24 2021 CS61B: Lecture #16 14 133:24 2021 CS61B: Lecture #16 16 133:24 2021 CS61B: Lecture #16 18
ne Intuition on Meaning of Growth Be Careful rsion and Recurrences: Fast Growth

2 of recursion. In the worst case, both recursive calls

ff X is a substring of S */
curs(String S, String X) {

nals(X)) return true;

ngth() <= X.length()) return false;

(S.substring(1), X) ||
(S.substring(0, S.length()-1), X);

) to be the worst-case cost of occurs(S,X) for S of
f fixed size Ny, measured in # of calls to occurs. Then
1, if N <N,

CN)=loo(N = 1)+1 i N > Ny
ws exponentially:

N-1)+1=22C(N-2)+1)+1=...=2(---214+1)+...
N-Ny
No 4 oN=No=1 L oN=No=2 4] — oN-No+l _ | ¢ @(2)\')

133:24 2021 CS61B: Lecture #16 17

+1

sther Typical Pattern: Merge Sort

L {
() < 2) return L; M “combin int .
and L1 of about equal size; erge (om l, e o« SIn-9|e
N - A ordered list") takes time
; L1 = sort(L1); . . .
le 0f LO and L1 proportional to size of its result.

nt size of L is N = 2*, worst-case cost function, C(N),
merge time (which is proportional to # items merged):

_ o, if N <2
| 2C(N/2) + N, if N >2.
= 2(2C(N/4) + N/2) + N

= 4C(N/4)+ N+ N
=8C(N/8)+ N+ N+ N

=N-0+N+N+...+N
k=IgN

C(N)

= NlgN
lan say it's O(N lg N) for arbitrary N (not just 2¥).

33:24 2021 CS61B: Lecture #16 19

	CS61B Lecture #16: Complexity
	What Are the Questions?
	Enlightening Example
	Cost Measures (Time)
	Asymptotic Cost
	Handy Tool: Order Notation
	Big Oh
	Big Omega
	Big Theta
	Aside: Various Mathematical Pedantry
	How We Use Order Notation
	Why It Matters
	Some Intuition on Meaning of Growth
	Using the Notation
	Be Careful
	Effect of Nested Loops
	Recursion and Recurrences: Fast Growth
	Binary Search: Slow Growth
	Another Typical Pattern: Merge Sort

