?: Let's Write a Program: Prime Numbers

java Primes U to print prime numbers through U. ra Primes 101
3
5 7111317192329
$\begin{array}{llllllll}37 & 41 & 43 & 47 & 53 & 59 & 61 & 67 \\ 71\end{array}$
79838997101
prime number is an integer greater than 1 that has no than itself other than 1.
$p>1$ is prime iff $\operatorname{gcd}(p, x)=1$ for all $0<x<p$.)
$N / k \geq \sqrt{N}$, for $N, k>0$.
N then N / k divides N.
-ential divisors up to and including the square root.

43:58 2021
C561B: Lecture \#2 2

Administrivia

ly, we can only have 200 people in here. Please occupy ts we've reserved.
sure you have obtained a Unix account
e not to take this course after all, please tell CalCentral at we can adjust the waiting list accordingly.
be due next Friday at midnight. While you get credit ission, we strongly suggest that you give the problems
discourage taking this course P/NP (or S/U)

Testing for Primes

```
boolean isPrime(int x) {
```


se;

sDivisible(x, 2); // "!" means "not"
is divisible by any positive number $>=\mathrm{K}$ and $<\mathrm{X}$

1. */
boolean isDivisible(int x, int k) \{
// a "guard"
se;
6 $\mathrm{k}==0$) // "\%" means "remainder"
1e;
(k < x \&\& x \% k ! = 0)
ivisible(x, k+1);

143:58 2021
CS618: Lecture \#2 4

Plan

Primes \{
-l primes up to ARGS[0] (interpreted as an
, 10 to a line. */
c void main(String[] args) \{
es(Integer.parseInt (args[0]));
.l primes up to and including LIMIT, 10 to */
-ic void printPrimes(int limit) \{
rery integer, x, between 2 and LIMIT, print it if pe(x), 10 to a line. \}*/

X is prime */
ic boolean isPrime(int x) \{
X is prime) $* /$;

Iteration

is tail recursive, and so creates an iterative process.
Algol family" production languages have special syntax
Four equivalent versions of isDivisible:

$$
\mathrm{k}==0 \text {) }
$$

$$
\begin{aligned}
& \text { while }(k<x) \text { \{ // ! (k >= x) } \\
& \text { if (} \mathrm{x} \% \mathrm{k}==0 \text {) } \\
& \quad \text { return true; } \\
& \mathrm{k}=\mathrm{k}+1 \text {; } \\
& \quad / / \text { or } \mathrm{k}+=1 \text {, or (} \mathrm{y} u \mathrm{ch} \text {) } \mathrm{k}++ \\
& \text { (} \\
& \text { return false; }
\end{aligned}
$$

e;
visible (x, $k+1$)

```
x) {
== 0
```

for (int k1 = k; k1 <x ; k1 += 1) \{
if ($\mathrm{x} \% \mathrm{k} 1==0$)
\quad return true;
\}
return false;

Thinking Recursively

check isDivisible $(13,2)$ by tracing one level.

- Call assigns $\mathrm{x}=13, \mathrm{k}=2$
divisible by
$>=K$ and $<X$,
*/
plean isDivisible.
$=0$)
isible ($\mathrm{x}, \mathrm{k}+1$);
nents aid understanding. it!
- Body has form 'if (k >= x) S_{1} else $S_{2}{ }^{\prime}$.
- Since $2<13$, we evaluate the first else.
- Check if $13 \bmod 2=0$; it's not.
- Left with isDivisible $(13,3)$.
- Rather than tracing it, instead use the comment:
- Since 13 is not divisible by any integer in the range $3 . .12$ (and $3>1$), isDivisible $(13,3)$ mus \dagger be false, and we're done!
- Sounds like that last step begs the question. Why doesn't it?

```
Cautionary Aside: Floating Point
lide, we had
    = (int) Math.round(Math.sqrt(x));
k1 = k; k1 <= limit; k1 += 1) {
```

at this would check all values of $k 1$ up to and including
bot of x.
oot of x.

1g-point operations yield approximations to the correhematical operations, you might ask the following about round (Math.sqrt(x)):
Is at least $\lfloor\sqrt{x}\rfloor$? ($\lfloor z\rfloor$ means "the largest integer $\leq z . ")$: might miss testing \sqrt{x} when x is a perfect square.
$1 s$, the answer is "yes" for IEEE floating-point square
nple of the sort of detail that must be checked in edge

Using Facts about Primes

used the Useful Facts from an earlier slide. Only have divisors up to the square root.
lent the iterative version of isDivisible:
f X is divisible by some number $>=\mathrm{K}$ and $<\mathrm{X}$,
hat $K>1$, and that X is not divisible by ber >1 and <K. */
tic boolean isDivisible(int x, int k) \{
= (int) Math.round(Math.sqrt(x));
k 1 = k; k1 <= limit; k1 += 1) \{
$\mathrm{k} 1==0$)
n true;
1se;
litional (blue) condition in the comment?

Simplified printPrimes Solution

primes up to and including LIMIT. */
void printPrimes(int limit) \{
$=2$; $\mathrm{p}<=$ limit; $\mathrm{p}+=1$) \{
${ }^{\text {PPrime }}(\mathrm{p})$) \{
rstem.out.print(p + " ");
println();

43:58 2021
CS618: Lecture \#2 10

nal Task: printPrimes (Simplified)

primes up to and including LIMIT. */ : void printPrimes(int limit) \{

printPrimes (full version)

```
primes up to and including LIMIT, 10 to
void printPrimes(int limit) {
= 2; p <= limit; p += 1) {
sPrime(p)) {
stem.out.print(p + " ");
+= 1;
    (np % 10 == 0)
    System.out.println();
0 != 0)
.out.println();
```

