
CS61B Lecture #22: Hashing

13:25:13 2021 CS61B: Lecture #22 1

Speeding Up Searching

• search is OK for small data sets, bad for large.

• search would be OK if we could rapidly narrow the search
items.

• that in constant time we could put any item in our data set
numbered bucket, where # buckets stays within a constant

keys.

• also that buckets contain roughly equal numbers of keys.

• search would be constant time in number of comparisons.

13:25:13 2021 CS61B: Lecture #22 2

Hash functions

• this, must have way to convert key to bucket number: a hash

hæ∫/ 2a a mixture; a jumble. b a mess.” Concise Oxford
Dictionary, eighth edition

•

data items.

are longs, evenly spread over the range 0..263 − 1.

keep maximum search to L = 2 items.

hash function h(K) = K%M , where M = N/L = 100 is the
of buckets: 0 ≤ h(K) < M .

100232, 433, and 10002332482 go into different buckets,
400210, and 210 all go into the same bucket.

13:25:13 2021 CS61B: Lecture #22 3

External chaining

• buckets.

• bucket is a list of data items.

300 100 1500

201 1

1199

• buckets have same length, but average is N/M = L, the load

• well, hash function must avoid too many collisions: keys that
equal values.

13:25:13 2021 CS61B: Lecture #22 4

Ditching the Chains: Open Addressing

• one data item in each bucket.

• there is a collision, and bucket is full, just use another.

• ways to do this:

probes: If there is a collision at h(K), try h(K)+m, h(K)+
etc. (wrap around at end), until you find an empty bucket.

Quadratic probes: h(K) + 1 ·m, h(K) + 22 ·m, h(K) + 32 ·m, . . .

hashing: h(K) + h′(K), h(K) + 2h′(K), etc.

• (K) = K%M , with M = 10, linear probes with m = 1.

2, 11, 3, 102, 9, 18, 108, 309 to empty table.

2 11 3 102 309 18 9

• get slow, even when table is far from full.

• literature on this technique, but

• Personally, I just settle for external chaining.

13:25:13 2021 CS61B: Lecture #22 5

Filling the Table

• (likely to be) constant-time lookup, need to keep #buckets
constant factor of #items.

• table when load factor gets higher than some limit.

• general, must re-hash all table items.

• operation constant time per item,

• doubling table size each time, get constant amortized time
insertion and lookup

• (Assuming, that is, that our hash function is good).

13:25:13 2021 CS61B: Lecture #22 6



Hash Functions: Strings

• String, "s0s1 · · · sn−1" want function that takes all characters
positions into account.

• wrong with s0 + s1 + . . . + sn−1?

• strings, Java uses

h(s) = s0 · 31
n−1 + s1 · 31

n−2 + . . . + sn−1

modulo 232 as in Java int arithmetic.

• to a table index in 0..N − 1, compute h(s)%N (but don’t
size that is multiple of 31!)

• hard to compute as you might think; don’t even need multipli-

= 0;

i = 0; i < s.length (); i += 1)

(r << 5) - r + s.charAt (i);

13:25:13 2021 CS61B: Lecture #22 7

Hash Functions: Other Data Structures I

• ArrayList, LinkedList, etc.) are analagous to strings: e.g.,

= 1; Iterator i = list.iterator();

(i.hasNext()) {
Object obj = i.next();

hashCode =

31*hashCode

(obj==null ? 0 : obj.hashCode());

• time spent computing hash function by not looking at entire
example: look only at first few items (if dealing with a List

SortedSet).

• more collisions, but does not cause equal things to go to dif-
buckets.

13:25:13 2021 CS61B: Lecture #22 8

Hash Functions: Other Data Structures II

• Recursively defined data structures ⇒ recursively defined hash

• example, on a binary tree, one can use something like

(T == null)

return 0;

return someHashFunction (T.label ())

^ hash(T.left ()) ^ hash(T.right ());

13:25:13 2021 CS61B: Lecture #22 9

Identity Hash Functions

• address of object (“hash on identity”) if distinct (!=) ob-
never considered equal.

• careful! Won’t work for Strings, because .equal Strings could
different buckets:

= "Hello",

= H + ", world!",

= "Hello, world!";

• S1.equals(S2), but S1 != S2.

13:25:13 2021 CS61B: Lecture #22 10

What Java Provides

• Object, is function hashCode().

• default, returns the identity hash function, or something similar.
this OK as a default?]

• override it for your particular type.

• reasons given on last slide, is overridden for type String, as well
types in the Java library, like all kinds of List.

• Hashtable, HashSet, and HashMap use hashCode to give
look-up of objects.

HashMap<KeyType,ValueType> map =

HashMap<>(approximate size, load factor);
map.put(key, value); // Map KEY -> VALUE.

map.get(someKey) // VALUE last mapped to by SOMEKEY.

map.containsKey(someKey) // Is SOMEKEY mapped?

map.keySet() // All keys in MAP (a Set)

13:25:13 2021 CS61B: Lecture #22 11

Special Case: Monotonic Hash Functions

• our hash function is monotonic: either nonincreasing or
nondescreasing.

• key k1 > k2, then h(k1) ≥ h(k2).

•

are time-stamped records; key is the time.

function is to have one bucket for every hour.

• case, you can use a hash table to speed up range queries

• be applied to strings? When would it work well?

13:25:13 2021 CS61B: Lecture #22 12



Perfect Hashing

• set of keys is fixed.

• tailor-made hash function might then hash every key to a differ-
perfect hashing.

• case, there is no search along a chain or in an open-address
either the element at the hash value is or is not equal to the
key.

• example, might use first, middle, and last letters of a string
3-digit base-26 numeral). Would work if those letters

among all strings in the set.

• use the Java method, but tweak the multipliers until all
gave different results.

13:25:13 2021 CS61B: Lecture #22 13

Characteristics

• good hash function, add, lookup, deletion take Θ(1) time,
amortized.

• cases where one looks up equal keys.

• bad for range queries: “Give me every name between Martin
Napoli.” [Why?]

• probably not a good idea for small sets that you rapidly
discard [why?]

13:25:13 2021 CS61B: Lecture #22 14


	CS61B Lecture #22: Hashing
	Speeding Up Searching
	Hash functions
	External chaining
	Ditching the Chains: Open Addressing
	Filling the Table
	Hash Functions: Strings
	Hash Functions: Other Data Structures I
	Hash Functions: Other Data Structures II
	Identity Hash Functions
	What Java Provides
	Special Case: Monotonic Hash Functions
	Perfect Hashing
	Characteristics

