Merge Sorting

lata in 2 equal parts; recursively sort halves; merge re-
lanalysis: $\Theta(N \lg N)$.
rernal sorting:
ak data into small enough chunks to fit in memory and
eatedly merge into bigger and bigger sequences.
sequences of arbitrary size on secondary storage using e:
= new $\operatorname{Data}[\mathrm{K}]$;
, set $V[i]$ to the first data item of sequence i; pre is data left to sort:
k so that $\mathrm{V}[\mathrm{k}]$ has data and is smallest;
[k] to output sequence;
here is more data in sequence k, read it into $V[k]$, ptherwise, clear $V[k]$;

35:37 2021
C5618: Lectures \#27 2

CS61B Lectures \#27

ay: $\operatorname{DS}(I J)$, Chapter 8 ; Next topic: Chapter 9.

ustration of Internal Merge Sort

ting, can use a binomial comb to orchestrate an iterative
; $N+1$ buckets that can contain lists, initially empty. : either empty or contains 2^{k} sorted items at any time.
m in the input list, turn it into a 1-element list, and bucket 0 (or simply put it in bucket 0 if that is empty). merge lists of length 2^{k} into bucket k. Whenever that f size 2^{k+1}, merge it into bucket $k+1$ and clear bucket
uts are processed, merge all the buckets into the final

$$
L:(9,15,5,3,0,6,10,-1,2,20,8)
$$

35:37 2021
CS618: Lectures \#27 4

ustration of Internal Merge Sort

ting, can use a binomial comb to orchestrate an iterative
; $N+1$ buckets that can contain lists, initially empty.
; either empty or contains 2^{k} sorted items at any time. m in the input list, turn it into a 1-element list, and , bucket 0 (or simply put it in bucket 0 if that is empty). merge lists of length 2^{k} into bucket k. Whenever that f size 2^{k+1}, merge it into bucket $k+1$ and clear bucket
uts are processed, merge all the buckets into the final

$$
L:(9,15,5,3,0,6,10,-1,2,20,8)
$$

ustration of Internal Merge Sort

ting, can use a binomial comb to orchestrate an iterative
$N+1$ buckets that can contain lists, initially empty. either empty or contains 2^{k} sorted items at any time. : m in the input list, turn it into a 1-element list, and bucket 0 (or simply put it in bucket 0 if that is empty). merge lists of length 2^{k} into bucket k. Whenever that f size 2^{k+1}, merge it into bucket $k+1$ and clear bucket
uts are processed, merge all the buckets into the final

$$
L:(9,15,5,3,0,6,10,-1,2,20,8)
$$

$0: 10$
$1: 0$
$2: 0$
$3: 0$
Merge $(9,15)$
$35: 372021$
C561B: Lectures \#27 6

ustration of Internal Merge Sort

ting, can use a binomial comb to orchestrate an iterative
, $N+1$ buckets that can contain lists, initially empty. ; either empty or contains 2^{k} sorted items at any time. m in the input list, turn it into a 1-element list, and bucket 0 (or simply put it in bucket 0 if that is empty). merge lists of length 2^{k} into bucket k. Whenever that f size 2^{k+1}, merge it into bucket $k+1$ and clear bucke \dagger
uts are processed, merge all the buckets into the final
$L:(9,15,5,3,0,6,10,-1,2,20,8)$

35:37 2021

ustration of Internal Merge Sort

ting, can use a binomial comb to orchestrate an iterative
$N+1$ buckets that can contain lists, initially empty. ; either empty or contains 2^{k} sorted items at any time. m in the input list, turn it into a 1-element list, and bucket 0 (or simply put it in bucket 0 if that is empty). merge lists of length 2^{k} into bucket k. Whenever that f size 2^{k+1}, merge it into bucket $k+1$ and clear bucke uts are processed, merge all the buckets into the final

$$
L:(9,15,5,3,0,6,10,-1,2,20,8)
$$

$$
\begin{align*}
& 0: 0 \tag{5}\\
& 1: 0 \\
& 2: 0 \\
& 3: 0
\end{align*} \quad(9,15)
$$

35:37 2021

ustration of Internal Merge Sort

ting, can use a binomial comb to orchestrate an iterative
$N+1$ buckets that can contain lists, initially empty. ; either empty or contains 2^{k} sorted items at any time. m in the input list, turn it into a 1-element list, and bucket 0 (or simply put it in bucket 0 if that is empty). merge lists of length 2^{k} into bucket k. Whenever that f size 2^{k+1}, merge it into bucket $k+1$ and clear bucket
uts are processed, merge all the buckets into the final

$$
L:(9,15,5,3,0,6,10,-1,2,20,8)
$$

ustration of Internal Merge Sort

ting, can use a binomial comb to orchestrate an iterative
$N+1$ buckets that can contain lists, initially empty. either empty or contains 2^{k} sorted items at any time. m in the input list, turn it into a 1-element list, and bucket 0 (or simply put it in bucket 0 if that is empty). merge lists of length 2^{k} into bucket k. Whenever that f size 2^{k+1}, merge it into bucket $k+1$ and clear bucket
uts are processed, merge all the buckets into the final

$$
L:(9,15,5,3,0,6,10,-1,2,20,8)
$$

$$
\begin{aligned}
& 0: \frac{1 \bullet}{1}(5) \frac{\text { Merge }}{} \\
& 1: 1 \bullet(9,15) \\
& 2: 0 \\
& 3: 0
\end{aligned}
$$

35:37 2021
CS618: Lectures \#27 10

ustration of Internal Merge Sort

ting, can use a binomial comb to orchestrate an iterative
$N+1$ buckets that can contain lists, initially empty.
; either empty or contains 2^{k} sorted items at any time. m in the input list, turn it into a 1-element list, and , bucket 0 (or simply put it in bucket 0 if that is empty). merge lists of length 2^{k} into bucket k. Whenever that f size 2^{k+1}, merge it into bucket $k+1$ and clear bucke \dagger
uts are processed, merge all the buckets into the final
$L:(9,15,5,3,0,6,10,-1,2,20,8)$

ustration of Internal Merge Sort

ting, can use a binomial comb to orchestrate an iterative
$N+1$ buckets that can contain lists, initially empty. either empty or contains 2^{k} sorted items at any time. : m in the input list, turn it into a 1-element list, and bucket 0 (or simply put it in bucket 0 if that is empty). merge lists of length 2^{k} into bucket k. Whenever that f size 2^{k+1}, merge it into bucket $k+1$ and clear bucket
uts are processed, merge all the buckets into the final

$$
L:(9,15,5,3,0,6,10,-1,2,20,8)
$$

Merge
$(3,5,9,15)$

35:37 2021
CS618: Lectures \#27 12

ustration of Internal Merge Sort

ting, can use a binomial comb to orchestrate an iterative
$N+1$ buckets that can contain lists, initially empty. ; either empty or contains 2^{k} sorted items at any time. m in the input list, turn it into a 1-element list, and bucket 0 (or simply put it in bucket 0 if that is empty). merge lists of length 2^{k} into bucket k. Whenever that f size 2^{k+1}, merge it into bucket $k+1$ and clear bucke \dagger
uts are processed, merge all the buckets into the final
L: $(9,15,5,3,0,6,10,-1,2,20,8)$

$(9,15)$
Merge

tration of Internal Merge Sort (II)

L: $(9,15,5,3,0,6,10,-1,2,20,8)$

0 elements processed

\qquad
essed
15)
essed 6 elements processed

35:37 2021

2: $\begin{aligned} & \text { 3: } 0 \\ & 0\end{aligned}$ 3 elements processed
0: $\left.\begin{array}{l}1 \bullet(8) \\ \text { 1: } \\ \text { 2: } \\ \text { 1- } \\ 0\end{array}\right)(2,20)$
3: $1 \bullet(-1,0,3,5,6,9,10,15)$
11 elements processed
all the lists into $(-1,0,2,3,5,6,8,9,10,15,20$
CS618: Lectures \#27 14

ustration of Internal Merge Sort

ting, can use a binomial comb to orchestrate an iterative
$N+1$ buckets that can contain lists, initially empty. : either empty or contains 2^{k} sorted items at any time. m in the input list, turn it into a 1-element list, and bucket 0 (or simply put it in bucket 0 if that is empty). merge lists of length 2^{k} into bucket k. Whenever that f size 2^{k+1}, merge it into bucket $k+1$ and clear bucket
uts are processed, merge all the buckets into the final
$L:(9,15,5,3,0,6,10,-1,2,20,8)$

$$
\begin{aligned}
& 0: 0 \\
& 1: 0 \\
& 2: 10 \\
& 3: 0 \\
& 3
\end{aligned}
$$

Example of Quicksort

ple, we continue until pieces are size ≤ 4.
:xt step are starred. Arrange to move pivot to dividing e.
insertion sort.

ing is "close to" right, so just do insertion sort:

-4	-1	0	10	12	13	15	16	18	19	22	29	34

35:37 2021
C561B: Lectures \#27 16

icksort: Speed through Probability

ta into pieces: everything > a pivot value at the high equence to be sorted, and everything \leq on the low end. sively on the high and low pieces.
top when pieces are "small enough" and do insertion sort thing.
rtion sort has low constant factors. By design, no item - of its piece [why?], so when pieces are small, \#inver-
ose pivot well. E.g.: median of first, last and middle uence.

Quick Selection

roblem: for given k, find $k^{\text {th }}$ smallest element in data. hod: sort, select element \#k, time $\Theta(N \lg N)$.
constant, can easily do in $\Theta(N)$ time:
h array, keep smallest k items.
$\Theta(N)$ time for all k by adapting quicksort:
around some pivot, p, as in quicksort, arrange that pivot r dividing line.
hat in the result, pivot is at index m, all elements \leq : indicies $\leq m$.
you're done: p is answer.
recursively select $k^{\text {th }}$ from left half of sequence.
, recursively select $(k-m-1)^{\text {th }}$ from right half of
:35:37 2021
CS618: Lectures \#27 18

Performance of Quicksort

: time:
of pivots good, divide data in two each time: $\Theta(N \lg N)$ id constant factor relative to merge or heap sort.
of pivots bad, most items on one side each time: $\Theta\left(N^{2}\right)$.
in best case, so insertion sort better for nearly orit sets.
point: randomly shuffling the data before sorting makes ery unlikely!

Selection Performance

rithm, if m roughly in middle each time, cost is

$$
\begin{aligned}
C(N) & = \begin{cases}1, & \text { if } N=1, \\
N+C(N / 2), & \text { otherwise } .\end{cases} \\
& =N+N / 2+\ldots+1 \\
& =2 N-1 \in \Theta(N)
\end{aligned}
$$

case, get $\Theta\left(N^{2}\right)$, as for quicksort.
non-obvious algorithm, can get $\Theta(N)$ worst-case time e CS170).

35:37 2021

(1)

