Merge Sorting

ata in 2 equal parts; recursively sort halves; merge re-

analysis: $\Theta(N \lg N)$.

ernal sorting:

ak data into small enough chunks to fit in memory and

atedly merge into bigger and bigger sequences. sequences of *arbitrary size* on secondary storage using

= new Data[K]; , set V[i] to the first data item of sequence i; ere is data left to sort: k so that V[k] has data and is smallest; /[k] to output sequence; ere is more data in sequence k, read it into V[k], otherwise, clear V[k];

CS61B Lectures #27

ay: DS(IJ), Chapter 8; Next topic: Chapter 9.

35:37 2021

CS61B: Lectures #27 2

ustration of Internal Merge Sort

ting, can use a *binomial comb* to orchestrate an iterative

N+1 buckets that can contain lists, initially empty.

either empty or contains 2^k sorted items at any time.

m in the input list, turn it into a 1-element list, and bucket 0 (or simply put it in bucket 0 if that is empty).

merge lists of length 2^k into bucket k. Whenever that f size 2^{k+1} , merge it into bucket k+1 and clear bucket

uts are processed, merge all the buckets into the final

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

35:37 2021

CS

CS61B: Lectures #27 4

ustration of Internal Merge Sort

ting, can use a *binomial comb* to orchestrate an iterative

N+1 buckets that can contain lists, initially empty. either empty or contains 2^k sorted items at any time.

m in the input list, turn it into a 1-element list, and bucket 0 (or simply put it in bucket 0 if that is empty).

merge lists of length 2^k into bucket k. Whenever that ${\bf f}$ size $2^{k+1},$ merge it into bucket k+1 and clear bucket

uts are processed, merge all the buckets into the final

ustration of Internal Merge Sort

ting, can use a *binomial comb* to orchestrate an iterative

N+1 buckets that can contain lists, initially empty.

either empty or contains 2^k sorted items at any time.

m in the input list, turn it into a 1-element list, and bucket 0 (or simply put it in bucket 0 if that is empty). merge lists of length 2^k into bucket k. Whenever that

f size 2^{k+1} , merge it into bucket k+1 and clear bucket

uts are processed, merge all the buckets into the final

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

35:37 2021

35:37 2021

<u>Merge</u> (9, 15)

CS61B: Lectures #27 6

ustration of Internal Merge Sort

ting, can use a *binomial comb* to orchestrate an iterative

N+1 buckets that can contain lists, initially empty.

either empty or contains 2^k sorted items at any time.

m in the input list, turn it into a 1-element list, and bucket 0 (or simply put it in bucket 0 if that is empty).

merge lists of length 2^k into bucket k. Whenever that f size 2^{k+1} , merge it into bucket k+1 and clear bucket

uts are processed, merge all the buckets into the final

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

	(9) - Merge	(15)
1: 0 2: 0 3: 0		

35:37 2021

CS61B: Lectures #27 1

ustration of Internal Merge Sort

ting, can use a *binomial comb* to orchestrate an iterative

N+1 buckets that can contain lists, initially empty. either empty or contains 2^k sorted items at any time. m in the input list, turn it into a 1-element list, and bucket 0 (or simply put it in bucket 0 if that is empty). merge lists of length 2^k into bucket k. Whenever that f size 2^{k+1} , merge it into bucket k+1 and clear bucket

uts are processed, merge all the buckets into the final

CS61B: Lectures #27 8

ustration of Internal Merge Sort

ting, can use a *binomial comb* to orchestrate an iterative

N+1 buckets that can contain lists, initially empty. either empty or contains 2^k sorted items at any time.

m in the input list, turn it into a 1-element list, and bucket 0 (or simply put it in bucket 0 if that is empty). merge lists of length 2^k into bucket k. Whenever that f size 2^{k+1} , merge it into bucket k+1 and clear bucket

uts are processed, merge all the buckets into the final

ustration of Internal Merge Sort

35:37 2021

ustration of Internal Merge Sort

ting, can use a *binomial comb* to orchestrate an iterative

N+1 buckets that can contain lists, initially empty.

either empty or contains 2^k sorted items at any time.

m in the input list, turn it into a 1-element list, and bucket 0 (or simply put it in bucket 0 if that is empty). merge lists of length 2^k into bucket k. Whenever that f size 2^{k+1} , merge it into bucket k+1 and clear bucket

uts are processed, merge all the buckets into the final

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

35:37 2021

35:37 2021

Merge (3, 5, 9, 15)

CS61B: Lectures #27 12

ustration of Internal Merge Sort

N+1 buckets that can contain lists, initially empty. either empty or contains 2^k sorted items at any time. m in the input list, turn it into a 1-element list, and

merge lists of length 2^k into bucket k. Whenever that f size 2^{k+1} , merge it into bucket k+1 and clear bucket

uts are processed, merge all the buckets into the final

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

ting, can use a *binomial comb* to orchestrate an iterative

bucket 0 (or simply put it in bucket 0 if that is empty).

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

ting, can use a *binomial comb* to orchestrate an iterative

N+1 buckets that can contain lists, initially empty. either empty or contains 2^k sorted items at any time.

m in the input list, turn it into a 1-element list, and bucket 0 (or simply put it in bucket 0 if that is empty).

merge lists of length 2^k into bucket k. Whenever that f size 2^{k+1} , merge it into bucket k+1 and clear bucket

uts are processed, merge all the buckets into the final

ustration of Internal Merge Sort

ting, can use a *binomial comb* to orchestrate an iterative

N+1 buckets that can contain lists, initially empty.

either empty or contains 2^k sorted items at any time.

m in the input list, turn it into a 1-element list, and bucket 0 (or simply put it in bucket 0 if that is empty).

merge lists of length 2^k into bucket k. Whenever that f size 2^{k+1} , merge it into bucket k+1 and clear bucket

uts are processed, merge all the buckets into the final

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

35:37 2021

35:37 2021

CS61B: Lectures #27 10

CS61B: Lectures #27 11

tration of Internal Merge Sort (II)

Example of Quicksort

ple, we continue until pieces are size ≤ 4 . xt step are starred. Arrange to move pivot to dividing e. insertion sort

8	-4	-7	12	-5	19	15	0	22	29	34	-1*	
												_
-1	18	13	12	10	19	15	0	22	2 29	9 34	16*	
								· .				
-1	15	13	12*	10	0	1	6 1	.9*	22	29	34 1	В
		_	_1								_	
-1	10	0	12	: [1	5	13	16	18	19	29	34	22

ing is "close to" right, so just do insertion sort:

4 -1 0 10 12 13 15 16 18 19 22 29 34

icksort: Speed through Probability

sively on the high and low pieces.

ta into pieces: everything > a *pivot* value at the high

equence to be sorted, and everything \leq on the low end.

top when pieces are "small enough" and do insertion sort

rtion sort has low constant factors. By design, no item

of its piece [why?], so when pieces are small, #inver-

ose pivot well. E.g.: *median* of first, last and middle

35:37	2021	

CS61B: Lectures #27 16

recursively select $k^{\dagger h}$ from left half of sequence.

Quick Selection

constant, can easily do in $\Theta(N)$ time:

h array, keep smallest k items.

dividing line.

indicies < m.

you're done: p is answer.

hod: sort, select element #k, time $\Theta(N \lg N)$.

 $\Theta(N)$ time for all k by adapting quicksort:

roblem: for given k, find kth smallest element in data.

around some pivot, p, as in guicksort, arrange that pivot

that in the result, pivot is at index m, all elements <

recursively select $(k - m - 1)^{\mathsf{th}}$ from right half of

CS61B: Lectures #27 18

Performance of Quicksort

time:

35:37 2021

of pivots good, divide data in two each time: $\Theta(N \lg N)$ d constant factor relative to merge or heap sort. of pivots bad, most items on one side each time: $\Theta(N^2)$. in best case, so insertion sort better for nearly orut sets.

point: randomly shuffling the data before sorting makes ery unlikely!

ustration of Internal Merge Sort

ting, can use a *binomial comb* to orchestrate an iterative

N+1 buckets that can contain lists, initially empty.

either empty or contains 2^k sorted items at any time.

m in the input list, turn it into a 1-element list, and bucket 0 (or simply put it in bucket 0 if that is empty).

merge lists of length 2^k into bucket k. Whenever that f size 2^{k+1} , merge it into bucket k+1 and clear bucket

uts are processed, merge all the buckets into the final

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

CS61B: Lectures #27 13

thing.

uence.

35:37 2021

Selection Performance		
rithm, if m roughly in middle each time, cost is		
$C(N) = \begin{cases} 1, & \text{if } N = 1, \end{cases}$		
(N+C(N/2)), otherwise.		
$= N + N/2 + \ldots + 1$		
$= 2N - 1 \in \Theta(N)$		
case, get $\Theta(N^2)$, as for quicksort.		
non obvious cleanithm can get $O(N)$ would can time		
(100-0000000000000000000000000000000000		
e (J1/U).		
35:37 2021 (S618: Lectures #27 20		
Selection Example		
Selection Example		
Selection Example		
Selection Example just item #10 in the sorted version of array:		
Selection Example just item #10 in the sorted version of array:		
Selection Example just item #10 in the sorted version of array:		
Selection Example just item #10 in the sorted version of array: : : : 37 4 49 10 40* 59 0 13 2 39 11 46 31		
Selection Example just item #10 in the sorted version of array: :: :: :: :: :: :: :: :: :: :: :: :: :		
Selection Example just item #10 in the sorted version of array: : <td< td=""><td></td><td></td></td<>		
Selection Example just item #10 in the sorted version of array: : : : <td></td> <td></td>		
Selection Example just item #10 in the sorted version of array: : <td< td=""><td></td><td></td></td<>		
Selection Example just item #10 in the sorted version of array: : 37 4 49 10 40* 59 0 13 2 39 11 46 31 to left of pivot 40: 1 37 4* 11 10 39 2 0 40 59 51 49 46 60 to right of pivot 4: M 27 13 11 10 30 21 31 21 31 21 10 40 40 100		
Selection Example just item #10 in the sorted version of array: : : : <td></td> <td></td>		
Selection Example just item #10 in the sorted version of array: :: : : : <td:< td=""> : <td:< t<="" td=""><td></td><td></td></td:<></td:<>		
Selection Example just item #10 in the sorted version of array: $ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ $		
Selection Example just item #10 in the sorted version of array: :: : <td></td> <td></td>		
Selection Example just item #10 in the sorted version of array: :: : <td></td> <td></td>		
Selection Example just item #10 in the sorted version of array: : : : </td <td></td> <td></td>		
Selection Example just item #10 in the sorted version of array: : 37 4 49 10 40* 59 0 13 2 39 11 46 31 0 to left of pivot 40:		
Selection Example just item #10 in the sorted version of array: : : : </td <td></td> <td></td>		
Selection Example just item #10 in the sorted version of array:		
Selection Example just item #10 in the sorted version of array: $ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ $		
Selection Example just item #10 in the sorted version of array: : : : </td <td></td> <td></td>		
Exercise Section Example just item #10 in the sorted version of array: $ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ $		