
CS61B Lectures #27

• sorts

•

Today: DS(IJ), Chapter 8; Next topic: Chapter 9.

15:35:37 2021 CS61B: Lectures #27 1

Merge Sorting

data in 2 equal parts; recursively sort halves; merge re-

• seen analysis: Θ(N lgN).

• external sorting:

break data into small enough chunks to fit in memory and

repeatedly merge into bigger and bigger sequences.

• K sequences of arbitrary size on secondary storage using
storage:

= new Data[K];

i, set V[i] to the first data item of sequence i;

there is data left to sort:

k so that V[k] has data and is smallest;

V[k] to output sequence;

there is more data in sequence k, read it into V[k],

otherwise, clear V[k];

15:35:37 2021 CS61B: Lectures #27 2

Illustration of Internal Merge Sort

sorting, can use a binomial comb to orchestrate an iterative

• lgN + 1 buckets that can contain lists, initially empty.

• is either empty or contains 2k sorted items at any time.

• item in the input list, turn it into a 1-element list, and
into bucket 0 (or simply put it in bucket 0 if that is empty).

• only merge lists of length 2k into bucket k. Whenever that
of size 2k+1, merge it into bucket k + 1 and clear bucket

• inputs are processed, merge all the buckets into the final

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

00:
01:
02:
03:

Merge
(9)

15:35:37 2021 CS61B: Lectures #27 3

Illustration of Internal Merge Sort

sorting, can use a binomial comb to orchestrate an iterative

• lgN + 1 buckets that can contain lists, initially empty.

• is either empty or contains 2k sorted items at any time.

• item in the input list, turn it into a 1-element list, and
into bucket 0 (or simply put it in bucket 0 if that is empty).

• only merge lists of length 2k into bucket k. Whenever that
of size 2k+1, merge it into bucket k + 1 and clear bucket

• inputs are processed, merge all the buckets into the final

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

1 •0: (9)
01:
02:
03:

15:35:37 2021 CS61B: Lectures #27 4

Illustration of Internal Merge Sort

sorting, can use a binomial comb to orchestrate an iterative

• lgN + 1 buckets that can contain lists, initially empty.

• is either empty or contains 2k sorted items at any time.

• item in the input list, turn it into a 1-element list, and
into bucket 0 (or simply put it in bucket 0 if that is empty).

• only merge lists of length 2k into bucket k. Whenever that
of size 2k+1, merge it into bucket k + 1 and clear bucket

• inputs are processed, merge all the buckets into the final

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

1 •0: (9)
01:
02:
03:

Merge
(15)

15:35:37 2021 CS61B: Lectures #27 5

Illustration of Internal Merge Sort

sorting, can use a binomial comb to orchestrate an iterative

• lgN + 1 buckets that can contain lists, initially empty.

• is either empty or contains 2k sorted items at any time.

• item in the input list, turn it into a 1-element list, and
into bucket 0 (or simply put it in bucket 0 if that is empty).

• only merge lists of length 2k into bucket k. Whenever that
of size 2k+1, merge it into bucket k + 1 and clear bucket

• inputs are processed, merge all the buckets into the final

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

00:
01:
02:
03:

Merge
(9, 15)

15:35:37 2021 CS61B: Lectures #27 6



Illustration of Internal Merge Sort

sorting, can use a binomial comb to orchestrate an iterative

• lgN + 1 buckets that can contain lists, initially empty.

• is either empty or contains 2k sorted items at any time.

• item in the input list, turn it into a 1-element list, and
into bucket 0 (or simply put it in bucket 0 if that is empty).

• only merge lists of length 2k into bucket k. Whenever that
of size 2k+1, merge it into bucket k + 1 and clear bucket

• inputs are processed, merge all the buckets into the final

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

00:
1 •1: (9, 15)
02:
03:

15:35:37 2021 CS61B: Lectures #27 7

Illustration of Internal Merge Sort

sorting, can use a binomial comb to orchestrate an iterative

• lgN + 1 buckets that can contain lists, initially empty.

• is either empty or contains 2k sorted items at any time.

• item in the input list, turn it into a 1-element list, and
into bucket 0 (or simply put it in bucket 0 if that is empty).

• only merge lists of length 2k into bucket k. Whenever that
of size 2k+1, merge it into bucket k + 1 and clear bucket

• inputs are processed, merge all the buckets into the final

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

00:
1 •1: (9, 15)
02:
03:

Merge
(5)

15:35:37 2021 CS61B: Lectures #27 8

Illustration of Internal Merge Sort

sorting, can use a binomial comb to orchestrate an iterative

• lgN + 1 buckets that can contain lists, initially empty.

• is either empty or contains 2k sorted items at any time.

• item in the input list, turn it into a 1-element list, and
into bucket 0 (or simply put it in bucket 0 if that is empty).

• only merge lists of length 2k into bucket k. Whenever that
of size 2k+1, merge it into bucket k + 1 and clear bucket

• inputs are processed, merge all the buckets into the final

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

1 •0: (5)
1 •1: (9, 15)
02:
03:

15:35:37 2021 CS61B: Lectures #27 9

Illustration of Internal Merge Sort

sorting, can use a binomial comb to orchestrate an iterative

• lgN + 1 buckets that can contain lists, initially empty.

• is either empty or contains 2k sorted items at any time.

• item in the input list, turn it into a 1-element list, and
into bucket 0 (or simply put it in bucket 0 if that is empty).

• only merge lists of length 2k into bucket k. Whenever that
of size 2k+1, merge it into bucket k + 1 and clear bucket

• inputs are processed, merge all the buckets into the final

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

1 •0: (5)
1 •1: (9, 15)
02:
03:

Merge
(3)

15:35:37 2021 CS61B: Lectures #27 10

Illustration of Internal Merge Sort

sorting, can use a binomial comb to orchestrate an iterative

• lgN + 1 buckets that can contain lists, initially empty.

• is either empty or contains 2k sorted items at any time.

• item in the input list, turn it into a 1-element list, and
into bucket 0 (or simply put it in bucket 0 if that is empty).

• only merge lists of length 2k into bucket k. Whenever that
of size 2k+1, merge it into bucket k + 1 and clear bucket

• inputs are processed, merge all the buckets into the final

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

00:
1 •1: (9, 15)
02:
03:

Merge
(3, 5)

15:35:37 2021 CS61B: Lectures #27 11

Illustration of Internal Merge Sort

sorting, can use a binomial comb to orchestrate an iterative

• lgN + 1 buckets that can contain lists, initially empty.

• is either empty or contains 2k sorted items at any time.

• item in the input list, turn it into a 1-element list, and
into bucket 0 (or simply put it in bucket 0 if that is empty).

• only merge lists of length 2k into bucket k. Whenever that
of size 2k+1, merge it into bucket k + 1 and clear bucket

• inputs are processed, merge all the buckets into the final

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

00:
01:
02:
03:

Merge
(3, 5, 9, 15)

15:35:37 2021 CS61B: Lectures #27 12



Illustration of Internal Merge Sort

sorting, can use a binomial comb to orchestrate an iterative

• lgN + 1 buckets that can contain lists, initially empty.

• is either empty or contains 2k sorted items at any time.

• item in the input list, turn it into a 1-element list, and
into bucket 0 (or simply put it in bucket 0 if that is empty).

• only merge lists of length 2k into bucket k. Whenever that
of size 2k+1, merge it into bucket k + 1 and clear bucket

• inputs are processed, merge all the buckets into the final

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

00:
01:
1 •2: (3, 5, 9, 15)
03:

Merge
(0)

15:35:37 2021 CS61B: Lectures #27 13

Illustration of Internal Merge Sort (II)

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

00:
01:
02:
03:

0 elements processed

processed

00:
1 •1: (9, 15)
02:
03:

2 elements processed

1 •0: (5)
1 •1: (9, 15)
02:
03:

3 elements processed

9, 15)

processed

00:
1 •1: (0, 6)
1 •2: (3, 5, 9, 15)
03:

6 elements processed

1 •0: (8)
1 •1: (2, 20)
02:
1 •3: (-1, 0, 3, 5, 6, 9, 10, 15)

11 elements processed

Merge all the lists into (-1, 0, 2, 3, 5, 6, 8, 9, 10, 15, 20

15:35:37 2021 CS61B: Lectures #27 14

Quicksort: Speed through Probability

• data into pieces: everything > a pivot value at the high
sequence to be sorted, and everything ≤ on the low end.

• recursively on the high and low pieces.

• stop when pieces are “small enough” and do insertion sort
whole thing.

• insertion sort has low constant factors. By design, no item
out of its piece [why?], so when pieces are small, #inver-

too.

• choose pivot well. E.g.: median of first, last and middle
sequence.

15:35:37 2021 CS61B: Lectures #27 15

Example of Quicksort

• example, we continue until pieces are size ≤ 4.

• next step are starred. Arrange to move pivot to dividing
time.

• is insertion sort.

18 -4 -7 12 -5 19 15 0 22 29 34 -1*

-1 18 13 12 10 19 15 0 22 29 34 16*

-1 15 13 12* 10 0 16 19* 22 29 34 18

-1 10 0 12 15 13 16 18 19 29 34 22
• everything is “close to” right, so just do insertion sort:

-4 -1 0 10 12 13 15 16 18 19 22 29 34

15:35:37 2021 CS61B: Lectures #27 16

Performance of Quicksort

• Probabalistic time:

choice of pivots good, divide data in two each time: Θ(N lgN)
good constant factor relative to merge or heap sort.

choice of pivots bad, most items on one side each time: Θ(N 2).

) in best case, so insertion sort better for nearly or-
input sets.

• Interesting point: randomly shuffling the data before sorting makes
very unlikely!

15:35:37 2021 CS61B: Lectures #27 17

Quick Selection

Problem: for given k, find kth smallest element in data.

• method: sort, select element #k, time Θ(N lgN).

• some constant, can easily do in Θ(N) time:

through array, keep smallest k items.

• probably Θ(N) time for all k by adapting quicksort:

Partition around some pivot, p, as in quicksort, arrange that pivot
at dividing line.

that in the result, pivot is at index m, all elements ≤

have indicies ≤ m.

k, you’re done: p is answer.

k, recursively select kth from left half of sequence.

k, recursively select (k − m − 1)th from right half of
sequence.

15:35:37 2021 CS61B: Lectures #27 18



Selection Example

Find just item #10 in the sorted version of array:

contents:
-4 37 4 49 10 40* 59 0 13 2 39 11 46 31

#10 to left of pivot 40:
-4 37 4* 11 10 39 2 0 40 59 51 49 46 60

#6 to right of pivot 4:
4 37 13 11 10 39 21 31* 40 59 51 49 46 60

4

#1 to right of pivot 31:
4 21 13 11 10 31 39 37 40 59 51 49 46 60

9

elements; just sort and return #1:
4 21 13 11 10 31 37 39 40 59 51 49 46 60

9

15:35:37 2021 CS61B: Lectures #27 19

Selection Performance

• algorithm, if m roughly in middle each time, cost is

C(N) =















1, if N = 1,
N + C(N/2), otherwise.

= N +N/2 + . . . + 1

= 2N − 1 ∈ Θ(N)

• worst case, get Θ(N 2), as for quicksort.

• another, non-obvious algorithm, can get Θ(N) worst-case time
(take CS170).

15:35:37 2021 CS61B: Lectures #27 20


	CS61B Lectures #27
	Merge Sorting
	Illustration of Internal Merge Sort
	Illustration of Internal Merge Sort (II)
	Quicksort: Speed through Probability
	Example of Quicksort
	Performance of Quicksort
	Quick Selection
	Selection Example
	Selection Performance

