Merge Sorting

ata in 2 equal parts; recursively sort halves; merge re-

analysis: ©(Nlg N).
ternal sorting:
nk data into small enough chunks to fit in memory and

atedly merge into bigger and bigger sequences.

sequences of arbitrary size on secondary storage using
B

= new DatalK];

, set V[i] to the first data item of sequence 1ij;
re is data left to sort:

k so that V[k] has data and is smallest;

[k] to output sequence;

ere is more data in sequence k, read it into V[k],
therwise, clear V[k];

35:37 2021 CS61B: Lectures #27 2

lustration of Internal Merge Sort
ting, can use a binomial comb to orchestrate an iterative
;N + 1 buckets that can contain lists, initially empty.

i either empty or contains 2" sorted items at any time.

'im in the input list, furn it into a 1-element list, and
1 bucket O (or simply put it in bucket O if that is empty).

merge lists of length 2" into bucket k. Whenever that
f size 2%*1, merge it into bucket & + 1 and clear bucket

uts are processed, merge all the buckets into the final

L:(9,15,5,3,0,6,10,-1, 2,20, 8)

g o
2:
3:

135:37 2021 CS61B: Lectures #27 4

lustration of Internal Merge Sort

ting, can use a binomial comb to orchestrate an iterative

;N + 1 buckets that can contain lists, initially empty.
i either empty or contains 2" sorted items at any time.

'im in the input list, furn it into a 1-element list, and
1 bucket O (or simply put it in bucket O if that is empty).

merge lists of length 2" into bucket k. Whenever that
f size 2%, merge it into bucket k& + 1 and clear bucket

uts are processed, merge all the buckets into the final

L:(9,15,5,3,0,6,10,-1, 2,20, 8)

? %= Merge
2: 00|
3:[0]

(9.15)

135:37 2021 CS61B: Lectures #27 6

CS61B Lectures #27

lay: DS(IJ), Chapter 8; Next topic: Chapter 9.

35:37 2021 CS61B: Lectures #27 1

lustration of Internal Merge Sort

ting, can use a binomial comb to orchestrate an iterative

;N + 1 buckets that can contain lists, initially empty.
i either empty or contains 2" sorted items at any time.

'm in the input list, furn it into a 1-element list, and
1 bucket O (or simply put it in bucket O if that is empty).

merge lists of length 2" into bucket k. Whenever that
f size 2"*!, merge it into bucket k + 1 and clear bucket

uts are processed, merge all the buckets into the final

L:(9,15,5,3,0,6,10,-1,2, 20, 8)

135:37 2021 CS61B: Lectures #27 3

lustration of Internal Merge Sort
ting, can use a binomial comb to orchestrate an iterative
;N + 1 buckets that can contain lists, initially empty.

i either empty or contains 2" sorted items at any time.

'm in the input list, furn it into a 1-element list, and
1 bucket O (or simply put it in bucket O if that is empty).

merge lists of length 2" into bucket k. Whenever that
f size 2"*!, merge it into bucket k + 1 and clear bucket

uts are processed, merge all the buckets into the final

L:(9,15,5,3,0,6,10,-1,2, 20, 8)

o (9) Merse (1)
3:

135:37 2021 CS61B: Lectures #27 5

ustration of Internal Merge Sort
Fing, can use a binomial comb to orchestrate an iterative
N + 1 buckets that can contain lists, initially empty.

either empty or contains 2 sorted items at any time.

m in the input list, furn it into a 1-element list, and
bucket O (or simply put it in bucket O if that is empty).

merge lists of length 2" into bucket k. Whenever that
If size 2*1, merge it into bucket k& + 1 and clear bucket

lts are processed, merge all the buckets into the final
L:(9,15,5,3,0,6,10,-1,2, 20, 8)
0: 0] Merge

21 @— (9,15)
3:

35:37 2021 CS61B: Lectures #27 8

lustration of Internal Merge Sort
ting, can use a binomial comb to orchestrate an iterative
;N + 1 buckets that can contain lists, initially empty.

i either empty or contains 2" sorted items at any time.

'im in the input list, furn it into a 1-element list, and
1 bucket O (or simply put it in bucket O if that is empty).

merge lists of length 2" into bucket k. Whenever that
f size 2%*1, merge it into bucket & + 1 and clear bucket

uts are processed, merge all the buckets into the final
L:(9,15,5,3,0,6,10,-1,2, 20, 8)
Merge
5) — 9% (3)

0: [1[e1— E
%@— 9, 15)
3:

135:37 2021 CS61B: Lectures #27 10

lustration of Internal Merge Sort
ting, can use a binomial comb to orchestrate an iterative
;N + 1 buckets that can contain lists, initially empty.

i either empty or contains 2" sorted items at any time.

'im in the input list, furn it into a 1-element list, and
1 bucket O (or simply put it in bucket O if that is empty).

merge lists of length 2" into bucket k. Whenever that
f size 2%, merge it into bucket k& + 1 and clear bucket

uts are processed, merge all the buckets into the final

L:(9,15,5,3,0,6,10,-1, 2,20, 8)

Merge 3 5 9 15

135:37 2021 CS61B: Lectures #27 12

ustration of Internal Merge Sort
Fing, can use a binomial comb to orchestrate an iterative
N + 1 buckets that can contain lists, initially empty.

either empty or contains 2 sorted items at any time.

m in the input list, furn it into a 1-element list, and
bucket O (or simply put it in bucket O if that is empty).

merge lists of length 2" into bucket k. Whenever that
if size 2*!, merge it infto bucket k + 1 and clear bucket
Uts are processed, merge all the buckets into the final

L:(9,15,5,3,0,6,10,-1,2, 20, 8)

0: 0]

21 @— (9, 15)
3:

35:37 2021 CS61B: Lectures #27 7

lustration of Internal Merge Sort
ting, can use a binomial comb to orchestrate an iterative
;N + 1 buckets that can contain lists, initially empty.

i either empty or contains 2" sorted items at any time.

'm in the input list, furn it into a 1-element list, and
1 bucket O (or simply put it in bucket O if that is empty).

merge lists of length 2" into bucket k. Whenever that
f size 2"*!, merge it into bucket k + 1 and clear bucket
uts are processed, merge all the buckets into the final

L:(9,15,5,3,0,6,10,-1,2, 20, 8)

[I[e— (5)

0
L @— (9, 15)
3:

135:37 2021 CS61B: Lectures #27 9

lustration of Internal Merge Sort

ting, can use a binomial comb to orchestrate an iterative

;N + 1 buckets that can contain lists, initially empty.
i either empty or contains 2" sorted items at any time.

'm in the input list, furn it into a 1-element list, and
1 bucket O (or simply put it in bucket O if that is empty).

merge lists of length 2" into bucket k. Whenever that
f size 2"*!, merge it into bucket k + 1 and clear bucket

uts are processed, merge all the buckets into the final

L:(9,15,5,3,0,6,10,-1,2, 20, 8)

0: 0]
21@— ©,15) Merge (3 5
3
135:37 2021 CS61B: Lectures #27 11

tration of Internal Merge Sort (II)

L: (9,15,5,3,0,6,10, -1, 2, 20, 8)

0 elements processed

O:[0]] 0: [I[eF— (5)

1: [T e (9, 15) 1: [T[e— (9, 15)

2:10]] 2:10]]

30 30
essed 2 elements processed 3 elements processed

0:[0]] 0: [Ie}— (8)

L:[1]e}— (0,6) 1: [T e}— (2, 20)
15) 2:[I[e}—~ (3,5,9,15) 2:[0] |

30] 3:[I[e}— (-1.0,3,5,6,9,10,15)
essed 6 elements processed 11 elements processed

all the lists into (-1,0, 2, 3,5, 6, 8,9, 10, 15, 20

35:37 2021 CS61B: Lectures #27 14

Example of Quicksort

ple, we continue until pieces are size < 4.

:xt step are starred. Arrange to move pivot to dividing
e.

insertion sort.

18\-4\-7\12\-5\19\15\0\22\29\34\-1*\

Z|H18\13\12\10|19\15\0\22\29\34\16*\

Zm 1513122100 |[16|[197]22]29]34] 18]
oo J[x2 15 13][16][18][1o |[29 [34] 22|

iing is "close to" right, so just do insertion sort:

4] 1]0[10][12]13[15[16] 1819]22]29]34]

135:37 2021 CS61B: Lectures #27 16

Quick Selection

'roblem: for given k, find it smallest element in data.
hod: sort, select element #£k, time ©(N lg N).

constant, can easily do in ©(XV) time:

lh array, keep smallest k items.

/O(N) time for all k by adapting quicksort:

around some pivot, p, as in quicksort, arrange that pivot
t dividing line.

that in the result, pivot is at index m, all elements <
s indicies < m.

you're done: p is answer.

recursively select Kt from left half of sequence.

;, recursively select (k —m — 1)'rh from right half of

135:37 2021 CS61B: Lectures #27 18

ustration of Internal Merge Sort

Fing, can use a binomial comb to orchestrate an iterative

N + 1 buckets that can contain lists, initially empty.
either empty or contains 2 sorted items at any time.

m in the input list, furn it into a 1-element list, and
bucket O (or simply put it in bucket O if that is empty).

merge lists of length 2" into bucket k. Whenever that
if size 2*!, merge it infto bucket k + 1 and clear bucket

Uts are processed, merge all the buckets into the final
L:(9,.15,5,3,0,6,10,-1,2, 20, 8)

o] _Merge (0)
O]

0:
1:
2: 3,5,9,15
So ¢)

35:37 2021 CS61B: Lectures #27 13

icksort: Speed through Probability

fa into pieces: everything > a pivot value at the high
zquence to be sorted, and everything < on the low end.

*sively on the high and low pieces.

fop when pieces are "small enough” and do insertion sort
thing.

rtion sort has low constant factors. By design, no item
r of its piece [why?], so when pieces are small, #inver-

ose pivot well. E.g.. median of first, last and middle
uence.

135:37 2021 CS61B: Lectures #27 15

Performance of Quicksort

: time:

of pivots good, divide data in two each time: O(Nlg N)

'd constant factor relative to merge or heap sort.

of pivots bad, most items on one side each time: O(N?).
in best case, so insertion sort better for nearly or-

ut sets.

soint: randomly shuffling the data before sorting makes
rery unlikely!

135:37 2021 CS61B: Lectures #27 17

Selection Performance

rithm, if m roughly in middle each time, cost is
1, if N=1,

N + C(N/2), otherwise.

= N+N/2+...+1

— 2N —1€8(N)

C(N) =

case, get O(N?), as for quicksort.

non-obvious algorithm, can get O(N) worst-case time
e CS170).

35:37 2021 CS61B: Lectures #27 20

Selection Example

just item #10 in the sorted version of array:

F[37] 4 [49] 10 [40%59] 0 [13] 2 [39] 11 [46] 31

P to left of pivot 40:
F[37[4[11]10]39] 2 [0 ||[40]|[59 |51 [49[46]60]

to right of pivot 4:
A J[37]13]11]10]39]21 \31*\‘“ 59[51[49]46]60]
4

to right of pivot 31:

B |[21]13[11]10[31]|[39]37]|[40]| 5951 [49]46]60]
9

hts; just sort and return #1:

B |[21]1311]10[31]|[37]39]|[40]| 5951 49146 60]
9

35:37 2021 CS61B: Lectures #27 19

	CS61B Lectures #27
	Merge Sorting
	Illustration of Internal Merge Sort
	Illustration of Internal Merge Sort (II)
	Quicksort: Speed through Probability
	Example of Quicksort
	Performance of Quicksort
	Quick Selection
	Selection Example
	Selection Performance

