
Lecture #32

22:32:24 2021 CS61B: Lecture #32 1

Case Study in System and Data-Structure
Design

• distributed version-control system, apparently the most
these currently.

• Conceptually, it stores snapshots (versions) of the files and directory
of a project, keeping track of their relationships, authors,
log messages.

• distributed, in that there can be many copies of a given repository,
supporting independent development, with machinery to transmit
reconcile versions between repositories.

• operation is extremely fast (as these things go).

22:32:24 2021 CS61B: Lecture #32 2

A Little History

• by Linus Torvalds and others in the Linux community when
developer of their previous, propietary VCS (Bitkeeper) withdrew

version.

• implementation effort seems to have taken about 2–3 months,
the 2.6.12 Linux kernel release in June, 2005.

• name, according to Wikipedia,

Torvalds has quipped about the name Git, which is British
slang meaning “unpleasant person”. Torvalds said: “I’m

egotistical bastard, and I name all my projects after myself.
’Linux’, now ’git’.” The man page describes Git as “the
content tracker.”

• was a collection of basic primitives (now called “plumbing”)
be scripted to provide desired functionality.

• higher-level commands (“porcelain”) built on top of these to
convenient user interface.

22:32:24 2021 CS61B: Lecture #32 3

Major User-Level Features (I)

• Abstraction is of a graph of versions or snapshots (called commits)
complete project.

• structure reflects ancestory: which versions came from

• commit contains

directory tree of files (like a Unix directory).

Information about who committed and when.

message.

Pointers to commit (or commits, if there was a merge) from which
commit was derived.

22:32:24 2021 CS61B: Lecture #32 4

Conceptual Structure

• internal components consist of four types of object:

basically hold contents of files.

directory structures of files.

Commits: Contain references to trees and additional information
(committer, date, log message).

References to commits or other objects, with additional
information, intended to identify releases, other important versions,

various useful information. (Won’t mention further today).

22:32:24 2021 CS61B: Lecture #32 5

Commits, Trees, Files

Version Version
2

Version
3

G1

G D

F2

F

G1

G

H1

H

I1

I

D

F2

F

G1

G

H1

H

Commits
Trees

Blobs (files)

Dashed lines link objects

that are the same

22:32:24 2021 CS61B: Lecture #32 6



Version Histories in Two Repositories

V1

V2

V3

V4

V8

V9

Repository 2

V1

V2

V3

V4

V8

V9V5

V6

Repository 2
after pushing V6 to it

22:32:24 2021 CS61B: Lecture #32 7

Major User-Level Features (II)

• commit has a name that uniquely identifies it to all versions.

• Repositories can transmit collections of versions to each other.

• Transmitting a commit from repository A to repository B requires
transmission of those objects (files or directory trees)

does not yet have (allowing speedy updating of repositories).

• Repositories maintain named branches, which are simply identifiers
particular commits that are updated to keep track of the most

commits in various lines of development.

• tags are essentially named pointers to particular commits.
from branches in that they are not usually changed.

22:32:24 2021 CS61B: Lecture #32 8

Internals

• repository is contained in a directory.

• may either be bare (just a collection of objects and
metadata), or may be included as part of a working directory.

• of the repository is stored in various objects corresponding
other “leaf” content), trees, and commits.

• space, data in files is compressed.

• garbage-collect the objects from time to time to save additional

22:32:24 2021 CS61B: Lecture #32 9

The Pointer Problem

• Git are files. How should we represent pointers between

• be able to transmit objects from one repository to another
different contents. How do you transmit the pointers?

• to transfer those objects that are missing in the target
repository. How do we know which those are?

• a counter in each repository to give each object there a
name. But how can that work consistently for two independent

repositories?

22:32:24 2021 CS61B: Lecture #32 10

Content-Addressable File System

• some way of naming objects that is universal.

• the names, then, as pointers.

• “Which objects don’t you have?” problem in an obvious

• Conceptually, what is invariant about an object, regardless of repository,
contents.

• use the contents as the name for obvious reasons.

• a hash of the contents as the address.

• That doesn’t work!

• Idea: Use it anyway!!

22:32:24 2021 CS61B: Lecture #32 11

How A Broken Idea Can Work

• is to use a hash function that is so unlikely to have a
that we can ignore that possibility.

• Cryptographic Hash Functions have relevant property.

• function, f , is designed to withstand cryptoanalytic attacks.
particular, should have

Pre-image resistance: given h = f(m), should be computationally
infeasible to find such a message m.

pre-image resistance: given messagem1, should be infeasible
m2 6= m1 such that f(m1) = f(m2).

Collision resistance: should be difficult to find any two messages
such that f(m1) = f(m2).

• these properties, scheme of using hash of contents as name is
unlikely to fail, even when system is used maliciously.

22:32:24 2021 CS61B: Lecture #32 12



SHA1

• SHA1 (Secure Hash Function 1).

• around with this using the hashlib module in Python3.

• names in Git are therefore 160-bit hash codes of contents,

• recent commit in the shared CS61B repository could be fetched
needed) with

checkout 3b30599cc43f4616eb626f8fa4fb2d0610d97963

22:32:24 2021 CS61B: Lecture #32 13

Low-Level Blob Management

• find out the hashcode that Git uses for the blob containing
something.java with the command

hash-object something.java

• tells you that the file would have hash code

192a0ca0d159f1550b0b5e102f7e06867cc44782

actually git add this file, its compressed contents will be
the file

.git/objects/19/2a0ca0d159f1550b0b5e102f7e06867cc44782

can look at them (uncompressed) with

cat-file -p 192a0ca0d159f1550b0b5e102f7e06867cc44782

22:32:24 2021 CS61B: Lecture #32 14


	Lecture #32
	Git: A Case Study in System and Data-Structure Design
	A Little History
	Major User-Level Features (I)
	Conceptual Structure
	Commits, Trees, Files
	Version Histories in Two Repositories
	Major User-Level Features (II)
	Internals
	The Pointer Problem
	Content-Addressable File System
	How A Broken Idea Can Work
	SHA1
	Low-Level Blob Management

