Why Graphs?

ng non-hierarchically related items

: pipelines, roads, assignment problems
 ring processes: flow charts, Markov models

ring partial orderings: PERT charts, makefiles seen, in representing connected structures as used in

18:33 2021
C561B: Lecture \#33 2

CS61B Lecture \#33

gs: Graph Structures: DSIJ, Chapter 12

Some Pictures

$-$

Some Terminology

sists of
hodes (aka vertices)
edges: pairs of nodes.
h an edge between are adjacent.
g on problem, nodes or edges may have labels (or weights)
node set $V=\left\{v_{0}, \ldots\right\}$, and edge set E.
have an order (first, second), they are directed edges, a directed graph (digraph), otherwise an undirected
cident to their nodes.
jes exit one node and enter the next.
path without repeated edges leading from a node back lowing arrows if directed).
clic if it has a cycle, else acyclic. Abbreviation: Directed $h-D A G$.

Examples of Use

be completed before; Node label = time to complete.

「

16:33 2021
C561B: Lecture \#33 6

Trees are Graphs

onnected if there is a (possibly directed) path between nodes.
e node of the pair is reachable from the other.
-ooted) tree iff connected, and every node but the root ne parent.
, acyclic, undirected graph is also called a free tree. ree to pick the root; e.g., all the following are the same
(e)
(d)

(c)

16:33 2021

Representation

I to number the nodes, and use the numbers in edges.
presentation: each node contains some kind of list (e.g. array) of its successors (and possibly predecessors).
:
2: \square
3: \square
ollection of all edges. For graph above:

$$
\{(1,2),(1,3),(2,3)\}
$$

atrix: Represent connection with matrix entry:
$\left.\begin{array}{l}1 \\ 2 \\ 2\end{array} \begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$

16:33 2021
CS618: Lecture \#33 8

More Examples

relationship

state might be (with probability)

state in state machine, label is triggering input. (Start i state 4 means "there is a substring '001' somewhere in

ive Depth-First Traversal of a Graph

ng and combinatorial problems using the "bread-crumb" in earlier lectures for a maze.
knodes as we traverse them and don't traverse previously s.
to talk about preorder and postorder, as for trees.
Traverse (Graph G, Node v) |void postorderTraverse(Graph G, Node v)
nmarked) \{
$e(v$, w) $\in G)$
se(G, w);

```
if (v is unmarked) {
    mark(v);
```

 for (Edge (v, w) \(\in G\))
 for (Edge(v, w) \(\in\)
 traverse(G, w) ;
visit v;
$\}^{v i s}$
\}

Traversing a Graph

hms on graphs depend on traversing all or some nodes.
se recursion because of cycles.
ic graphs, can get combinatorial explosions:

he root and do recursive traversal down the two edges hode: $\Theta\left(2^{N}\right)$ operations!
try to visit each node constant \# of times (e.g., once).

Topological Sorting

n a DAG, find a linear order of nodes consistent with
the nodes v_{0}, v_{1}, \ldots such that v_{k} is never reachable $>k$.
this. Also PERT charts.

16:33 2021
CS61B: Lecture \#33 12

2 Depth-First Traversal of a Graph (II)

n interested in traversing all nodes of a graph, not just able from one node.
epeat the procedure as long as there are unmarked
rderTraverse(Graph G) \{
ill marks;
\in nodes of G) \{
orderTraverse(G, v);
orderTraverse(Graph G) \{
Ill marks;
\in nodes of G) \{
torderTraverse(G, v);

eneral Graph Traversal Algorithm

PF.VERTICES fringe;
IAL COLLECTION;
-.isEmpty()) \{
ringe.REMOVE_HIGHEST_PRIORITY_ITEM ()
$D(v))\{$
dge(v,w) \{
DS_PROCESSING (w))
to fringe;
:TION_OF_VERTICES, INITIAL_COLLECTION, etc. with xpressions, or methods to different graph algorithms.

16:33 2021
C561B: Lecture \#33 14

Sorting and Depth First Search

: Suppose we reverse the links on our graph.
ecursive DFS on the reverse graph, starting from node ple, we will find all nodes that must come before H. earch reaches a node in the reversed graph and there ssors, we know that it is safe to put that node first. postorder traversal of the reversed graph visits nodes I predecessors have been visited.

Numbers show post-order traversal order starting from G : everything that must come before G.
epth-First Traversal Illustrated

Example: Depth-First Traversal

every node reachable from v once, visiting nodes further
.
ions are specializations of general algorithm x> fringe;
ack containing $\{v\}$;
age.isEmpty()) \{
$=$ fringe.pop();
ed (v)) \{
b);
h edge(v,w) \{
narked(w))
pge.push(w) ;

ortest Paths: Dijkstra's Algorithm

1 a graph (directed or undirected) with non-negative ompute shortest paths from given source node, s, to
sum of weights along path is smallest.
le, keep estimated distance from s, \ldots
zceding node in shortest path from s.
vertex> fringe;
$\mathrm{v}\{\mathrm{v} \cdot \operatorname{dist}()=\infty ; \operatorname{vack}()=\operatorname{null} ;\}$
ty queue ordered by smallest. .dist();
to fringe
ringe.removeFirst();
$e(v, w)\{$
() + weight (v,w) < w.dist())
() $=$ v.dist() + weight(v,w) ; w.back() $=v ;\}$

16:33 2021
CS61B: Lecture \#33 18

Topological Sort in Action

[A, C , B, F , D]

$[A, C, B, F, D, E, G, H]$

