
CS61B Lecture #33

Readings: Graph Structures: DSIJ, Chapter 12
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Why Graphs?

• expressing non-hierarchically related items

•

Networks: pipelines, roads, assignment problems

Representing processes: flow charts, Markov models

Representing partial orderings: PERT charts, makefiles

we’ve seen, in representing connected structures as used in
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Some Terminology

• consists of

of nodes (aka vertices)

of edges: pairs of nodes.

with an edge between are adjacent.

Depending on problem, nodes or edges may have labels (or weights)

• call node set V = {v0, . . .}, and edge set E.

• edges have an order (first, second), they are directed edges,
have a directed graph (digraph), otherwise an undirected

• incident to their nodes.

• edges exit one node and enter the next.

• a path without repeated edges leading from a node back
(following arrows if directed).

• cyclic if it has a cycle, else acyclic. Abbreviation: Directed
Graph—DAG.
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Some Pictures
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Trees are Graphs

• connected if there is a (possibly directed) path between
of nodes.

• one node of the pair is reachable from the other.

• (rooted) tree iff connected, and every node but the root
exactly one parent.

• connected, acyclic, undirected graph is also called a free tree.
we’re free to pick the root; e.g., all the following are the same
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Examples of Use

• Connecting road, with length.

Detroit Chicago
200

• Must be completed before; Node label = time to complete.

Eat
1 hr

Sleep
8 hrs

• Begat

Martin George
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More Examples

• some relationship

potstickers John Mary
eats loves

• next state might be (with probability)

hat the cat in bed
0.60.4 0.4 0.1

0.9

• next state in state machine, label is triggering input. (Start
in state 4 means “there is a substring ‘001’ somewhere in

input”.)

s 2 3 4
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Representation

• useful to number the nodes, and use the numbers in edges.

• representation: each node contains some kind of list (e.g.,
or array) of its successors (and possibly predecessors).

1: a

(2,3) ()

2: b

(3) (1)

3: c

() (1,2)

• sets: Collection of all edges. For graph above:

{(1, 2), (1, 3), (2, 3)}

• matrix: Represent connection with matrix entry:
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Traversing a Graph

• algorithms on graphs depend on traversing all or some nodes.

• use recursion because of cycles.

• acyclic graphs, can get combinatorial explosions:
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the root and do recursive traversal down the two edges
each node: Θ(2N) operations!

• typically try to visit each node constant # of times (e.g., once).
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Recursive Depth-First Traversal of a Graph

• looping and combinatorial problems using the “bread-crumb”
used in earlier lectures for a maze.

• mark nodes as we traverse them and don’t traverse previously
nodes.

• sense to talk about preorder and postorder, as for trees.

preorderTraverse(Graph G, Node v)

unmarked) {

mark(v);

(Edge(v, w) ∈ G)

traverse(G, w);

void postorderTraverse(Graph G, Node v)

{

if (v is unmarked) {

mark(v);

for (Edge(v, w) ∈ G)

traverse(G, w);

visit v;

}

}
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Recursive Depth-First Traversal of a Graph (II)

• often interested in traversing all nodes of a graph, not just
reachable from one node.

• repeat the procedure as long as there are unmarked

preorderTraverse(Graph G) {
clear all marks;

(v ∈ nodes of G) {
preorderTraverse(G, v);

postorderTraverse(Graph G) {
clear all marks;

(v ∈ nodes of G) {
postorderTraverse(G, v);

17:06:33 2021 CS61B: Lecture #33 11

Topological Sorting

Given a DAG, find a linear order of nodes consistent with

• order the nodes v0, v1, . . . such that vk is never reachable
k′ > k.

• does this. Also PERT charts.
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Sorting and Depth First Search

• Observation: Suppose we reverse the links on our graph.

• recursive DFS on the reverse graph, starting from node
example, we will find all nodes that must come before H.

• search reaches a node in the reversed graph and there
successors, we know that it is safe to put that node first.

• general, a postorder traversal of the reversed graph visits nodes
all predecessors have been visited.
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Numbers show post-order
traversal order starting
from G: everything that
must come before G.
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General Graph Traversal Algorithm

OF VERTICES fringe;

INITIAL COLLECTION;
(!fringe.isEmpty()) {

fringe.REMOVE HIGHEST PRIORITY ITEM();

MARKED(v)) {

(v);

edge(v,w) {

NEEDS PROCESSING(w))

to fringe;

COLLECTION OF VERTICES, INITIAL COLLECTION, etc. with
types, expressions, or methods to different graph algorithms.
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Example: Depth-First Traversal

Visit every node reachable from v once, visiting nodes further
first.

sections are specializations of general algorithm

Stack<Vertex> fringe;

stack containing {v};
(!fringe.isEmpty()) {

= fringe.pop();

marked(v)) {
(v);

(v);

each edge(v,w) {
!marked(w))

fringe.push(w);
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Depth-First Traversal Illustrated
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Topological Sort in Action

fringe
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Shortest Paths: Dijkstra’s Algorithm

Given a graph (directed or undirected) with non-negative
weights, compute shortest paths from given source node, s, to

• “Shortest” = sum of weights along path is smallest.

• node, keep estimated distance from s, . . .

• preceding node in shortest path from s.

PriorityQueue<Vertex> fringe;

v { v.dist() = ∞; v.back() = null; }

priority queue ordered by smallest .dist();
vertices to fringe;

(!fringe.isEmpty()) {

fringe.removeFirst();

edge(v,w) {

(v.dist() + weight(v,w) < w.dist())

w.dist() = v.dist() + weight(v,w); w.back() = v; }
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Example
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result:

Shortest-path tree

X|d processed node at distance d

Y|d node in fringe at distance d
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