
CS61B Lecture #33

Readings: Graph Structures: DSIJ, Chapter 12

17:06:33 2021 CS61B: Lecture #33 1

Why Graphs?

• expressing non-hierarchically related items

•

Networks: pipelines, roads, assignment problems

Representing processes: flow charts, Markov models

Representing partial orderings: PERT charts, makefiles

we’ve seen, in representing connected structures as used in

17:06:33 2021 CS61B: Lecture #33 2

Some Terminology

• consists of

of nodes (aka vertices)

of edges: pairs of nodes.

with an edge between are adjacent.

Depending on problem, nodes or edges may have labels (or weights)

• call node set V = {v0, . . .}, and edge set E.

• edges have an order (first, second), they are directed edges,
have a directed graph (digraph), otherwise an undirected

• incident to their nodes.

• edges exit one node and enter the next.

• a path without repeated edges leading from a node back
(following arrows if directed).

• cyclic if it has a cycle, else acyclic. Abbreviation: Directed
Graph—DAG.

17:06:33 2021 CS61B: Lecture #33 3

Some Pictures

a

b

c

dAcyclic:

Directed

a

b

c

d

e
Undirected

a

b

c

dCyclic: a

b

c

d

a

b

c

d

1

3 2

1

Labels: a

b

c

d

e
1

3

2
0

17:06:33 2021 CS61B: Lecture #33 4

Trees are Graphs

• connected if there is a (possibly directed) path between
of nodes.

• one node of the pair is reachable from the other.

• (rooted) tree iff connected, and every node but the root
exactly one parent.

• connected, acyclic, undirected graph is also called a free tree.
we’re free to pick the root; e.g., all the following are the same

d

e b

a d e

c

d

b c

a e

17:06:33 2021 CS61B: Lecture #33 5

Examples of Use

• Connecting road, with length.

Detroit Chicago
200

• Must be completed before; Node label = time to complete.

Eat
1 hr

Sleep
8 hrs

• Begat

Martin George

17:06:33 2021 CS61B: Lecture #33 6

More Examples

• some relationship

potstickers John Mary
eats loves

• next state might be (with probability)

hat the cat in bed
0.60.4 0.4 0.1

0.9

• next state in state machine, label is triggering input. (Start
in state 4 means “there is a substring ‘001’ somewhere in

input”.)

s 2 3 4
0 0 1

0

1

1

0,1

17:06:33 2021 CS61B: Lecture #33 7

Representation

• useful to number the nodes, and use the numbers in edges.

• representation: each node contains some kind of list (e.g.,
or array) of its successors (and possibly predecessors).

1: a

(2,3) ()

2: b

(3) (1)

3: c

() (1,2)

• sets: Collection of all edges. For graph above:

{(1, 2), (1, 3), (2, 3)}

• matrix: Represent connection with matrix entry:

1

2

3

1 2 3
















0 1 1
0 0 1
0 0 0

















17:06:33 2021 CS61B: Lecture #33 8

Traversing a Graph

• algorithms on graphs depend on traversing all or some nodes.

• use recursion because of cycles.

• acyclic graphs, can get combinatorial explosions:

0

1

2

3

4

5

6

7

8

. . . 3N

the root and do recursive traversal down the two edges
each node: Θ(2N) operations!

• typically try to visit each node constant # of times (e.g., once).

17:06:33 2021 CS61B: Lecture #33 9

Recursive Depth-First Traversal of a Graph

• looping and combinatorial problems using the “bread-crumb”
used in earlier lectures for a maze.

• mark nodes as we traverse them and don’t traverse previously
nodes.

• sense to talk about preorder and postorder, as for trees.

preorderTraverse(Graph G, Node v)

unmarked) {

mark(v);

(Edge(v, w) ∈ G)

traverse(G, w);

void postorderTraverse(Graph G, Node v)

{

if (v is unmarked) {

mark(v);

for (Edge(v, w) ∈ G)

traverse(G, w);

visit v;

}

}

17:06:33 2021 CS61B: Lecture #33 10

Recursive Depth-First Traversal of a Graph (II)

• often interested in traversing all nodes of a graph, not just
reachable from one node.

• repeat the procedure as long as there are unmarked

preorderTraverse(Graph G) {
clear all marks;

(v ∈ nodes of G) {
preorderTraverse(G, v);

postorderTraverse(Graph G) {
clear all marks;

(v ∈ nodes of G) {
postorderTraverse(G, v);

17:06:33 2021 CS61B: Lecture #33 11

Topological Sorting

Given a DAG, find a linear order of nodes consistent with

• order the nodes v0, v1, . . . such that vk is never reachable
k′ > k.

• does this. Also PERT charts.

F

G

A

B

C

D

E

F

G

H

A
C

B
D
F

E
G

H

C
A

F
D
B

G
E

H

C
F
G

A
B

D
E
H

Graph (two views) Possible Orderings

17:06:33 2021 CS61B: Lecture #33 12

Sorting and Depth First Search

• Observation: Suppose we reverse the links on our graph.

• recursive DFS on the reverse graph, starting from node
example, we will find all nodes that must come before H.

• search reaches a node in the reversed graph and there
successors, we know that it is safe to put that node first.

• general, a postorder traversal of the reversed graph visits nodes
all predecessors have been visited.

F

G

A

B

C 0

D

E

F 1

G 2

H

Numbers show post-order
traversal order starting
from G: everything that
must come before G.

17:06:33 2021 CS61B: Lecture #33 13

General Graph Traversal Algorithm

OF VERTICES fringe;

INITIAL COLLECTION;
(!fringe.isEmpty()) {

fringe.REMOVE HIGHEST PRIORITY ITEM();

MARKED(v)) {

(v);

edge(v,w) {

NEEDS PROCESSING(w))

to fringe;

COLLECTION OF VERTICES, INITIAL COLLECTION, etc. with
types, expressions, or methods to different graph algorithms.

17:06:33 2021 CS61B: Lecture #33 14

Example: Depth-First Traversal

Visit every node reachable from v once, visiting nodes further
first.

sections are specializations of general algorithm

Stack<Vertex> fringe;

stack containing {v};
(!fringe.isEmpty()) {

= fringe.pop();

marked(v)) {
(v);

(v);

each edge(v,w) {
!marked(w))

fringe.push(w);

17:06:33 2021 CS61B: Lecture #33 15

Depth-First Traversal Illustrated

e

f

a

b

c

d

[b,d]

e

f

a

b

c

d

[c,e,d]

e

f

a

b

c

d

[d,f,e,d]

e

f

[f,e,d]

e

f

a

b

c

d

[e,e,d]

e

f

a

b

c

d

[e,d]

e

f

a

b

c

d

[]

e

f

17:06:33 2021 CS61B: Lecture #33 16

Topological Sort in Action

fringe

F1

G1

A0

B0

C0

D1

E3

F1

G1

H1

[A]

A0

B0

C0

D0

E3

F0

G1

H1

[A,C]

A0

B0

C0

D0

E2

F0

G1

H1

[A,C,B]

F0

G0

A0

B0

C0

D0

E0

F0

G0

H1

[A,C,B,F,D]

...

A0

B0

C0

D0

E0

F0

G0

H0

[A,C,B,F,D,E,G,H]

17:06:33 2021 CS61B: Lecture #33 17

Shortest Paths: Dijkstra’s Algorithm

Given a graph (directed or undirected) with non-negative
weights, compute shortest paths from given source node, s, to

• “Shortest” = sum of weights along path is smallest.

• node, keep estimated distance from s, . . .

• preceding node in shortest path from s.

PriorityQueue<Vertex> fringe;

v { v.dist() = ∞; v.back() = null; }

priority queue ordered by smallest .dist();
vertices to fringe;

(!fringe.isEmpty()) {

fringe.removeFirst();

edge(v,w) {

(v.dist() + weight(v,w) < w.dist())

w.dist() = v.dist() + weight(v,w); w.back() = v; }

17:06:33 2021 CS61B: Lecture #33 18

Example

C|∞

F|∞

2 2

1

A|0 B|2

C|5

D|3 E|∞ F|∞

G|7 H|∞

2

5

3

7

4

5 3

2 2

3 6

4

2
1

1

A|0 B|2

C|5

D|3 E|5 F|∞

G|7 H|∞

2

5

3

7

4

5 3

2 2

3 6

4

2
1

1

|5

F|∞

2

1

A|0 B|2

C|5

D|3 E|5 F|7

G|6 H|9

2

5

3

7

4

5 3

2 2

3 6

4

2
1

1

A|0 B|2

C|5

D|3 E|5 F|6

G|6 H|7

2

5

3

7

4

5 3

2 2

3 6

4

2
1

1

A|0 B|2

C|5

D|3 E|5 F|6

G|6 H|7

2

5

3

7

4

5 3

2 2

3 6

4

2
1

1

result:

Shortest-path tree

X|d processed node at distance d

Y|d node in fringe at distance d

17:06:33 2021 CS61B: Lecture #33 19

	CS61B Lecture #33
	Why Graphs?
	Some Terminology
	Some Pictures
	Trees are Graphs
	Examples of Use
	More Examples
	Representation
	Traversing a Graph
	Recursive Depth-First Traversal of a Graph
	Recursive Depth-First Traversal of a Graph (II)
	Topological Sorting
	Sorting and Depth First Search
	General Graph Traversal Algorithm
	Example: Depth-First Traversal
	Depth-First Traversal Illustrated
	Topological Sort in Action
	Shortest Paths: Dijkstra's Algorithm
	Example

