Point-to-Point Shortest Path

porithm gives you shortest paths from a particular given others in a graph.
you're only interested in getting to a particular vertex? algorithm finds paths in order of length, you could and stop when you get to the vertex you want.
be really wasteful.
to travel by road from Denver to a destination on lower z in New York City is about 1750 miles (says Google).
from Denver to Berkeley is about 1250 miles.
lore much of California, Nevada, Arizona, etc. before r destination, even though these are all in the wrong
en worse when graph is infinite, generated on the fly.

59:20 2021
CS618: Lecture \#34 2

CS61B Lecture \#34

earch, Minimum spanning trees, union-find.

59:20 2021	

Illustration

ines indicate distances from Denver we have determined
gorithm would have us look at Grand Junction next (smallest m Denver).
d in the heuristic remaining distance to NYC (our goal), orth Platte instead

59:20 2021 C561B: Lecture \#34 4

A* Search

g for a path from vertex Denver to the desired NYC
t we had a simple heuristic estimate, $h(V)$, of the length om any vertex V to NYC.
that instead of visiting vertices in the fringe in order rtest known path to Denver, we order by the sum of a plus this heuristic estimate of the remaining distance enver, $V)+h(V)$.
ds, we look at places that are reachable from places ready know the shortest path to Denver and choose ook like they will result in the shortest trip to NYC, the remaining distance.
ate is good, then we don't look at, say, Grand Junction est by road), because it's in the wrong direction.
g algorithm is A^{*} search.
work, we must be careful about the heuristic.

missible Heuristics for A^{*} Search

stic estimate for the distance to NYC is too high (i.e., he actual path by road), then we may get to NYC without ng points along the shortest route.
if our heuristic decided that the midwest was literally nowhere, and $h(C)=2000$ for C any city in Michigan or I only find a path that detoured south through Kentucky. missible, $h(C)$ must never overestimate $d(C$, NYC), the distance from C to NYC
hand, $h(C)=0$ will work (what is the result?), but yield I algorithm. This is just Dijkstra's algorithm.

59:20 2021
C561B: Lecture \#34 6

missible Heuristics for A^{*} Search

stic estimate for the distance to NYC is too high (i.e., he actual path by road), then we may get to NYC without ng points along the shortest route.
if our heuristic decided that the midwest was literally f nowhere, and $h(C)=2000$ for C any city in Michigan or I only find a path that detoured south through Kentucky. missible, $h(C)$ must never overestimate $d(C$, NYC), the distance from C to NYC
hand, $h(C)=0$ will work (what is the result?), but yield algorithm.

Summary of Shortest Paths

gorithm finds a shortest-path tree computing giving shortest paths in a weighted graph from a given starting ther nodes.
d $=$
emove V nodes from priority queue +
pdate all neighbors of each of these nodes and add or hem in queue ($E \lg E$)
$r+E \lg V)=\Theta((V+E) \lg V)$
farches for a shortest path to a particular target node. sstra's algorithm, except:
1 we take target from queue.
pue by estimated distance to start + heuristic guess of distance ($h(v)=d(v$, target))
must not overestimate distance and obey triangle inequality $l(b, c) \geq d(a, c))$.

59:20 202
CS61B: Lecture \#34 8

Consistency

t we estimate $h($ Chicago $)=700$, and $h($ Springfield, IL $)=$ Chicago, Springfield) $=200$.
200 miles to Springfield, we guess that we are suddenly pser to NYC.
ssible, since both estimates are low, but it will mess up n.
will require that we put processed nodes back into the se our estimate was wrong.
:ourse, anyway) we also require consistent heuristics: $+d(A, B)$, as for the triangle inequality.
† heuristics are admissible (why?).
as the crow flies" is a reasonable $h(\cdot)$ in the trip-planning
search (and others) is in cs61b-software and on the machines as graph-demo.

m Spanning Trees by Prim's Algorithm

ow a tree starting from an arbitrary node.
p, add the shortest edge connecting some node already 0 one that isn't yet.
is work?
inge;
(v.dist() $=\infty$; v.parent() $=$ null; $\}$
y starting node, s;
queue ordered by smallest .dist();
fringe;
sEmpty())
gge. removeFirst();
v,w) \{
ge \&\& weight (v,w) < w.dist())
$=$ weight (v, w) ; w.parent () = v; \}

59:20 2021
C561B: Lecture \#34 10

Minimum Spanning Trees

en a set of places and distances between them (assume ive), find a set of connecting roads of minimum total allows travel between any two.
ou get will not necessarily be shortest paths.
that such a set of connecting roads and places must because removing one road in a cycle still allows all to

m Spanning Trees by Prim's Algorithm

ow a tree starting from an arbitrary node.
p, add the shortest edge connecting some node already o one that isn't yet.
is work?
inge;
$\{$ v.dist() $=\infty$; v.parent() = null; \}
starting node, s .
queue ordered by smallest .dist();
fringe;
sEmpty())
nge. removeFirst();
v,w) \{
ge \&\& weight(v,w) < w.dist())
$=$ weight (v, w) ; w.parent () = v; \}

59:20 2021
C561B: Lecture \#34 14

m Spanning Trees by Prim's Algorithm

ow a tree starting from an arbitrary node.
, add the shortest edge connecting some node already o one that isn't yet.
lis work?
inge;
\{ v.dist() $=\infty$; v.parent() = null; \}
y starting node, s;
queue ordered by smallest . dist();
fringe;
sEmpty()) \{
nge. removeFirst();
$\mathrm{v}, \mathrm{w})\{$
ge \&\& weight(v,w) < w.dist())
$=$ weight(v, w) ; w.parent() = v; \}

m Spanning Trees by Prim's Algorithm

ow a tree starting from an arbitrary node.
p, add the shortest edge connecting some node already o one that isn't yet
is work?
inge;
v.dist() $=\infty$; v.parent() = null;
starting node, s;
queue ordered by smallest .dist();
fringe;
sEmpty()) \{
age. removeFirst()
v,w) \{
ge \&\& weight(v,w) < w.dist())
$=$ weight(v, w) ; w.parent() = v; \}

m Spanning Trees by Prim's Algorithm

ow a tree starting from an arbitrary node.
, add the shortest edge connecting some node already o one that isn't yet
is work?
inge;
$\{$ v.dist() $=\infty$; v.parent() $=$ null; $\}$
y starting node, s ;
queue ordered by smallest .dist();
fringe;
sEmpty())
pge. removeFirst()
v,w) \{
ge \&\& weight (v,w) < w.dist())
$=\operatorname{weight}(\mathrm{v}, \mathrm{w})$; w.parent() = v; \}

2020
CS618: Lecture \#34 16

m Spanning Trees by Prim's Algorithm

ow a tree starting from an arbitrary node.
, add the shortest edge connecting some node already o one that isn't yet.
is work?
inge;
v.dist() $=\infty$; v.parent() $=$ null;
starting node, s ;
queue ordered by smallest .dist()
fringe;
Empty())
ge.removeFirst();
v,w) \{
ge \&\& weight(v,w) < w.dist())
$=$ weight(v, w) ; w.parent() $=\mathrm{v}$; \}

9:20 2021
5618: Lecture \#34 18

m Spanning Trees by Prim's Algorithm

ow a tree starting from an arbitrary node.
, add the shortest edge connecting some node already o one that isn't yet
is work?
nge;
v.dist() $=\infty$; v.parent() = null;
starting node, s;
ueue ordered by smallest . dist();
fringe;
Empty()) \{
nge.removeFirst()
v,w) \{
ge \&\& weight($\mathrm{v}, \mathrm{w})$ < w.dist())
$=$ weight(v, w) ; w.parent() = v; \}

Example of Kruskal's Algorithm

ugh the edges in increasing order of weight (here, I phabetically).
:onnect two unconnected groups get added to the tree ز).
pin already-joined groups are discarded ('X'ed out here).
a minimal spanning tree (a free tree).
59:20 2021
CS61B: Lecture \#34 20

Spanning Trees by Kruskal's Algorithm

the shortest edge in a graph can always be part of a nning tree.
z have a bunch of subtrees of a MST, then the shortest onnects two of them can be part of a MST, combining rees into a bigger one.
trivial) subtree for each node in the graph;

Age (v, w), in increasing order of weight \{
,w) connects two different subtrees) \{
(v, w) to MST;
pine the two subtrees into one;

Example of Kruskal's Algorithm

ıgh the edges in increasing order of weight (here, I phabetically).
:onnect two unconnected groups get added to the tree j).
pin already-joined groups are discarded ('X'ed out here).
a minimal spanning tree (a free tree).
59:20 2021
CS61B: Lecture \#34 22

Example of Kruskal's Algorithm

Igh the edges in increasing order of weight (here, I phabetically).
:onnect two unconnected groups get added to the tree j).
pin already-joined groups are discarded ('X'ed out here).
a minimal spanning tree (a free tree).
59:20 2021
C5618: Lecture \#34 21

Example of Kruskal's Algorithm

igh the edges in increasing order of weight (here, I phabetically).
onnect two unconnected groups get added to the tree j).
oin already-joined groups are discarded ('X'ed out here).
a minimal spanning tree (a free tree)
59:20 2021
C561B: Lecture \#34 24

Example of Kruskal's Algorithm

ıgh the edges in increasing order of weight (here, I phabetically).
:onnect two unconnected groups get added to the tree s).
oin already-joined groups are discarded ('X'ed out here).
a minimal spanning tree (a free tree).
59:20 2021
C561B: Lecture \#34 ${ }^{23}$

Example of Kruskal's Algorithm

ıgh the edges in increasing order of weight (here, I phabetically).
:onnect two unconnected groups get added to the tree b).
pin already-joined groups are discarded ('X'ed out here).
a minimal spanning tree (a free tree).
59:20 2021
CS61B: Lecture \#34 26

Example of Kruskal's Algorithm

ugh the edges in increasing order of weight (here, I phabetically).
:onnect two unconnected groups get added to the tree j).
pin already-joined groups are discarded ('X'ed out here). a minimal spanning tree (a free tree).
59:20 2021
C5618: Lecture \#34 25

Example of Kruskal's Algorithm

ıgh the edges in increasing order of weight (here, I phabetically).
:onnect two unconnected groups get added to the tree b).
pin already-joined groups are discarded ('X'ed out here).
a minimal spanning tree (a free tree).
59:20 2021
CS61B: Lecture \#34 28
\square

Example of Kruskal's Algorithm

ıgh the edges in increasing order of weight (here, I phabetically).
:onnect two unconnected groups get added to the tree引).
pin already-joined groups are discarded ('X'ed out here).
a minimal spanning tree (a free tree).
59:20 2021

Union Find

orithm required that we have a set of sets of nodes with ns:
h of the sets a given node belongs to.
vo sets with their union, reassigning all the nodes in the al sets to this union.
g to do is to store a set number in each node, making
es changing the set number in one of the two sets being smaller is better choice.
in individual union can take $\Theta(N)$ time.
fast?

59:20 2021
C5618: Lecture \#34 30

Example of Kruskal's Algorithm

agh the edges in increasing order of weight (here, I phabetically).
:onnect two unconnected groups get added to the tree s).
oin already-joined groups are discarded ('X'ed out here).
a minimal spanning tree (a free tree).
59:20 2021
C561B: Lecture \#34 29

Path Compression

unioning really fast, but the find operation potentially

).llowing trick: whenever we do a find operation, compress the root, so that subsequent finds will be faster.
le each of the nodes in the path point directly to the
very fast, and sequence of unions and finds each have early constant amortized time.
$d^{\prime} g$ ' in last tree (result of compression on right):

59:20 2021 CS618: Lecture \#34 32
\square

A Clever Trick

to represent a set of nodes by one arbitrary representative set.
de contain a pointer to another node in the same set. each pointer to represent the parent of a node in a tree representative node as its root.
set a node is in, follow parent pointers.
such trees, make one root point to the other (choose he larger tree as the union representative).

