Why Random Sequences?

```
stical samples
ithms
y:
random keys and nonces (random one-time values used
lessages unique.)
g streams of random bits (e.g., stream ciphers encrypt
by xor'ing reproducible streams of pseudo-random bits
pits of the message.)
se, games
38:45 2021

\section*{CS61B Lecture \#35}
om Numbers (Chapter 11)
e random sequences?
andom sequences"?
om sequences.
ne.
a library classes and methods.
nutations.

\section*{Pseudo-Random Sequences}
nable, a "truly" random sequence is difficult (i.e., slow) er (or human) to produce. Must have some nondeterministic rce. Can use:
etween radioactive decays.
etween keystrokes or incoming internet message.
poses, we need only a sequence that satisfies certain -operties, even if deterministic (as is useful for reproducibility).
e.g., cryptography) we need sequence that is hard or -o predict.
om sequence: deterministic sequence that passes some statistical tests that random sequences (probably) pass.
look at lengths of runs: increasing or decreasing contiguous \(s\).
ly, statistical criteria to be used are quite involved. For Knuth, volume 2.

38:45 2021
CS61B: Lecture \#35 4

\section*{What Is a "Random Sequence"?}
a sequence where all numbers occur with equal frequency"?
\(3,4, \ldots\) ?
ow about: "an unpredictable sequence where all numbers qual frequency?"
\(0,1,1,2,2,2,2,2,3,4,4,0,1,1,1, \ldots\) ?
it is wrong with \(0,0,0,0, \ldots\) anyway? Can't that occur election?

\section*{What Can Go Wrong (I)?}
considers arithmetical methods of producing random course, in a state of \(\sin\)

JOHN VON NEUMANN (1951)
Is, many impossible values: E.g., \(a, c, m\) even.
erns. E.g., just using lower 3 bits of \(X_{i}\) in Java's 48-bit get integers in range 0 to 7 . By properties of modular
\(\bmod 8=\left(25214903917 X_{i-1}+11 \bmod 2^{48}\right) \bmod 8\)
\[
=\left(5\left(X_{i-1} \bmod 8\right)+3\right) \bmod 8
\]
period of 8 on this generator; sequences like
\[
0,1,3,7,1,2,7,1,4, \ldots
\]
le. This is why Java doesn't give you the raw 48 bits.

38:45 2021
CS61B: Lecture \#35 6

\section*{lerating Pseudo-Random Sequences}
as you might think.
mplex jumbling methods can give rise to bad sequences. uential method is a simple method used by Java:
\[
\begin{aligned}
X_{0} & =\text { arbitrary seed } \\
X_{i} & =\left(a X_{i-1}+c\right) \bmod m, \quad i>0
\end{aligned}
\]
large power of 2 .
sults, want \(a \equiv 5 \bmod 8\), and \(a, c, m\) with no common
nerator with a period of \(m\) (length of sequence before and reasonable potency (measures certain dependencies unt \(X_{i}\).)
ts of \(a\) to "have no obvious pattern" and pass certain see Knuth).
\(=25214903917, c=11, m=2^{48}\), to compute 48-bit om numbers. It's good enough for many purposes, but aphically secure.
38:45 2021

\section*{Additive Generators}

\section*{erator:}
\[
X_{n}= \begin{cases}\text { arbitary value, } & n<55 \\ \left(X_{n-24}+X_{n-55}\right) \bmod 2^{e}, & n \geq 55\end{cases}
\]
es than 24 and 55 possible.
period of \(2^{f}\left(2^{55}-1\right)\), for some \(f<e\).
mentation with circular buffer:
55;
\(+31) \% 55\); ; // Why +31 (55-24) instead of -24 ?
/* modulo \(2^{32}\) */
54] is initialized to some "random" initial seed values.

\section*{What Can Go Wrong (II)?}
ds to bad correlations.
s IBM generator RANDU: \(c=0, a=65539, m=2^{31}\)
U is used to make 3D points: \(\left(X_{i} / S, X_{i+1} / S, X_{i+2} / S\right)\) es to a unit cube.
be arranged in parallel planes with voids between. So its" won't ever get near many points in the cube:


\footnotetext{
Mis Sanchez at English Wikipedia - Transferred from en.wikipedia to Commons
I. \(C C\) BY-SA 3.0 , htpps://commons.wikimedia.org/w/ index.php? 2 curid \(=3832343\)
}

\section*{aphic Pseudo-Random Number Generator Example}
good block cipher-an encryption algorithm that encrypts bits (not just one byte at a time as for Enigma). AES is
-ovide a key, \(K\), and an initialization value \(I\).
ıdo-random number is now \(E(K, I+j)\), where \(E(x, y)\) is on of message \(y\) using key \(x\).

\section*{iphic Pseudo-Random Number Generators}
orm of linear congruential generators means that one euture values after seeing relatively few outputs.
ou want unpredictable output (think on-line games involving domly generated keys for encrypting your web traffic.)
phic pseudo-random number generator (CPRNG) has the nat
ts of a sequence, no polynomial-time algorithm can guess pit with better than \(50 \%\) accuracy.
current state of the generator, it is also infeasible to ct the bits it generated in getting to that state.

\section*{Adjusting Range (II)}
jias problems when \(n\) does not evenly divide \(2^{48}\), Java alues after the largest multiple of \(n\) that is less than
```

m}\mathrm{ integer in the range 0 . n-1, n>0. */

```
nt (int \(n\) ) \{
\(=\) next random long ( \(0 \leq X<2^{48}\) );
\(s 2^{k}\) for some \(k\) )
urn top \(k\) bits of X ;
\(=\) largest multiple of \(n\) that is \(<2^{48}\);
\(X_{i}>=\) MAX)
\(=\) next random long ( \(0 \leq X<2^{48}\) );
\(X_{i} /(\mathrm{MAX} / \mathrm{n}) ;\)

\section*{Adjusting Range and Distribution}
equence of numbers, \(X_{i}\), from above methods in range , how to get uniform random integers in range 0 to
easy: use top \(k\) bits of next \(X_{i}\) (bottom \(k\) bits not as
be careful of slight biases at the ends. For example, if \(X_{i} /\left(2^{48} / n\right)\) using all integer division, and if \(\left(2^{48} / n\right)\) gets \(n\), then you can get \(n\) as a result (which you don't want).
fix that by computing \(\left(2^{48} /(n-1)\right)\) instead, the probability -1 will be wrong.

\section*{ieneralizing: Other Distributions}
have some desired probability distribution function, and andom numbers that are distributed according to that How can we do this?
normal distribution:
X)

: desired probability distribution. \(P(Y \leq X)\) is the hat random variable \(Y\) is \(\leq X\).

38:45 2021
CS618: Lecture \#35 14

\section*{Arbitrary Bounds}
rbitrary range of integers ( \(L\) to \(U\) )?
im float, \(x\) in range \(0 \leq x<d\), compute
nextInt ( \(1 \ll 24\) ) / (1<<24);
ble a bit more complicated: need two integers to get
land \(=\) ((long) nextInt (1<<26) << 27)
+ (long) nextInt(1<<27);
* bigRand / (1L << 53);

\section*{Java Classes}
(): random double in [0..1)
til.Random: a random number generator with constructors: nerator with "random" seed (based on time).
d) generator with given starting value (reproducible)
random integer
nt in range [0..n).
andom 64-bit integer.
(). nextFloat(), nextDouble() Next random values of other
types
\(n()\) normal distribution with mean 0 and standard deviation rve").
. shuffle \((L, R)\) for list \(L\) and Random \(R\) permutes \(L\) ing \(R\) ).

38:45 2021
CS618: Lecture \#35 16

\section*{realizing: Other Distributions (II)}
e \(y\) uniformly between 0 and 1, and the corresponding \(x\) ed according to \(P\).


\section*{Random Selection}

\section*{que would allow us to select \(N\) items from list:}

L and return sublist of \(\mathrm{K}>=0\) randomly
elements of L , using R as random source. */
(List L, int \(k\), Random R) \{
i \(=\) L.size(); \(i+k>\) L.size(); i -= 1)
ement i-1 of L with element
tInt(i) of L;
sublist(L.size()-k, L.size());
efficient for selecting random sequence of \(K\) distinct n \([0 . . N)\), with \(K \ll N\)

38:45 2021
C561B: Lecture \#35 18

\section*{Shuffling}
a random permutation of some sequence.
b technique for sorting \(N\)-element list:
\(N\) random numbers
ich to one of the list elements
ist using random numbers as keys.
a bit better:
(List L, Random R) \{
\(i=\) L.size(); i > 0; i \(-=1\) )
elements i-1 and R.nextInt(i) of \(L\);
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & Swap items & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 48 & 2\% & 3\% & A & 2 C & 30 & \(3 \Longleftrightarrow 3\) & A\& & 30 & 2 C & A & 3\% & 2\% \\
\hline \(4 \%\) & 139 & 3\% & A & 29 & 2\% & \(2 \Longleftrightarrow 0\) & 20 & 30 & A\% & A & 3\% & 2\% \\
\hline \(4 \%\) & 391 & 20 & A \({ }^{\text {P }}\) & 3\% & 2\% & \(1 \Longleftrightarrow 0\) & 30 & 20 & A\% & AS & \(3 \%\) & 2\% \\
\hline \multicolumn{6}{|c|}{452021} & & \multicolumn{6}{|c|}{CS618: Lecture \#35 17} \\
\hline
\end{tabular}
```

rnative Selection Algorithm (Floyd)
nnce of K distinct integers
0<=K<=N. */
plect(int N, int K, Random R)
pger> S = new ArrayList<>();
I-K; i < N; i += 1)
os in S are < i
mndnt(i+1); // 0<= s <= i<N
pet(j) for some j)
value i (which can't be there
Fter the s (i.e., at a random
ther than the front
i);
random value s (which can't be
et) at front
);
38:452021

```

Example
\begin{tabular}{c|c|c}
\(i\) & \(s\) & \(S\) \\
\hline 5 & 4
\end{tabular}
54 [4]
62 [2, 4]
\(75[5,2,4]\)
\(85[5,8,2,4]\)
\(94[5,8,2,4,9]\)
selectRandomIntegers(10, 5, R)```

