Compression and Git

a new object in the repository each time a changed file is committed.

et crowded as a result.

17:52 2021

e, it compresses each object.

d then (such as when sending or receiving from another it packs objects together into a single file: a "packfile."

sticking the files together, uses a technique called *ession*.

resentation is largely taken from CS61B lectures by

Lecture #39: Compression

CS61B: Lecture #39 2

Delta Compression (II)

o versions		
V1		V2
fully open to m	ıy awful	My eyes are fully open to my awfu
		situation.
t once to Roder	rick and	I shall go at once to Roderick and
oration. I shall	tell him	make him an oration.
ed my forgotte	n moral	I shall tell him I've recovered my
		forgotten moral senses,
		and don't give twopence halfpenney
		for any consequences.
V1		V2
lines from V2]	My eye	s are fully open to my awful
	situatio	n.
	I shall	go at once to Roderick and
	make hi	im an oration.
	I shall	tell him I've recovered my
	forgott	en moral senses,
	and dor	i't give twopence halfpenney
	for any	consequences.
17:52 2021		CS61B: Lecture #39 4

Delta Compression

ere will be many versions of a file in a Git repository: nd previous edits of it, each in different commits.

keep track explicitly of which file came from where, nard in general:

file is split into two, or two are spliced together?

ss that files with same name and (roughly) same size in are probably versions of the same file.

appens, store one of them as a pointer to the other, changes.

Compression and Decompression

on algorithm converts a stream of symbols into another, am.

lossless if the algorithm is *invertible* (no information

mbol is the bit:

ply replaced the 8-bit ASCII bit sequences for digits xample, the single character 'O' is encoded as 0x30=0b00110000) *inary-coded decimal*).

bit sequences *codewords*, which we associate with the original, uncompressed text.

r than 50% compression with English text.

```
17:52 2021
```

CS61B: Lecture #39 6

Two Unix Compression Programs

37.pic.in # The GNU version of ZIP t37.pic.in # Another compression program .pic* Size (bytes) s61b cs61b 31065 Apr 27 23:36 lect37.pic.in s61b cs61b 10026 Apr 27 23:36 lect37.pic.in.bz2 # Roughly 1/3 size s61b cs61b 10270 Apr 27 23:36 lect37.pic.in.gz 37.pdf .pdf* s61b cs61b 124665 Mar 30 13:46 lect37.pdf t37.pic.in.gz > lect37.pic.in.ungzip # Uncompress pic.in lect37.pic.in.ungzip # No difference from original (lossless) 7.pic.in.gz > lect37.pic.in.gz.gz .pic*gz s61b cs61b 10270 Apr 27 23:36 lect37.pic.in.gz s61b cs61b 10293 Apr 28 00:16 lect37.pic.in.gz.gz

Prefix Free Codes

eeds pauses between codewords to prevent ambiguities.

ATH, BABE, or BATH.

17:52 2021

is that Morse code allows many codewords to be *prefixes* s, so that it's difficult to know when you have come to he.

s to devise prefix-free codes, in which no codeword is nother.

CS61B: Lecture #39 8

ays knows when a codeword ends.

Example: Morse Code

1 space 111 01 E 010 001 T 1000 0001 A 1010 00001 O 1011 000001 I 1100 000001 I "I ATE" is unambiguously 00100101 in Encoding A, or	
01 E 010 001 T 1000 0001 A 1010 00001 0 1011 000001 I 1100 000001 I 000001 I 1000 "I ATE" is unambiguously 00100101 in Encoding A, or	
001 T 1000 0001 A 1010 00001 0 1011 000001 I 1100 I 1100 I 1000 00100101 in Encoding A, or I 1000010	
0001 A 1010 00001 O 1011 000001 I 1100 I 1100 "I ATE" is unambiguously 00100101 in Encoding A, or 01000101 in Encoding A, or 0100010101 in Encoding D	
00001 0 1011 000001 I 1100 "I ATE" is unambiguously 00100101 in Encoding A, or 01000010 in Encoding D	
000001 I 1100 "I ATE" is unambiguously 00100101 in Encoding A, or 01000010 in Encoding D	
"I ATE" is unambiguously 00100101 in Encoding A, or	
"I ATE" is unambiguously 00100101 in Encoding A, or	
00100101 in Encoding A, or	
ructures might you use to HashMap or array Decode?	
7:52 2021 C5618: Lecture #	39 10

Prefix-Free Examples

1

01

001

17:52 2021

	■● Z = ● ●
ple to transmit. three symbols: and pause. tween codewords.	0 1 2 3 4 5 5 6 7 7 9 5 5 5 5 5 5 5 5 5 5 5 5 5

Encoding B ding A 111 space Е 010 т 1000 1010 0001 Α 00001 0 1011 000001 Ι 1100 . . . "I ATE" is unambiguously 00100101 in Encoding A, or 101000010 in Encoding B.

tructures might you use to... ode?

CODID: LECIUNE #37 7	CS61B: Lecture #39	9
----------------------	--------------------	---

quency	Encoding	
).35		
0.17		i
0.17		
0.16		
0.15		
ncies of	f all charact	ers in text to be compressed.
d chara	cters into tv	vo groups of roughly equal frequency.
roup wi	th leading 0	, right group with leading 1.
all grou	ps are of siz	ze 1.
7:52 2021		C561B: Lecture #39 12

Prefix-Free Examples

ling A		En	coding B
1		space	111
01		E	010
001		т	1000
0001		A	1010
00001		0	1011
000001		I	1100
"T ATE" is	unambiquously		

"I ATE" is unambiguously

00100101 in Encoding A, or 101000010 in Encoding B.

tructures might you use to... : HashMap or array Decode? Ans: Trie

17:52 2021

ding A

1

01

Shannon-Fano Coding

ncies of all characters in text to be compressed. ed characters into two groups of roughly equal frequency. group with leading 0, right group with leading 1. all groups are of size 1.

Shannon-Fano Coding

ncies of all characters in text to be compressed. In characters into two groups of roughly equal frequency. group with leading 0, right group with leading 1. all groups are of size 1.

0

0

CS61B: Lecture #39 16

0

1

Huffman Coding

ollowing until there is just one node:

he two nodes with smallest frequencies as children of a node whose frequency is the sum of those of the two ng combined.

dge to the left child be labeled '0' and to the right be

tree shows the encoding for each symbol: concatenate els on the path from the root to the symbol.

7:52	2021	

CS61B: Lecture #39 14

Shannon-Fano Coding

ncies of all characters in text to be compressed. In characters into two groups of roughly equal frequency. group with leading 0, right group with leading 1.

all groups are of size 1.

Shannon-Fano Coding

17:52 2021

ncies of all characters in text to be compressed. Incies of all characters into two groups of roughly equal frequency. group with leading 0, right group with leading 1. all groups are of size 1.

Can We Do Better?

encoding of symbols to codewords that are bitstrings r a particular text if it encodes the text in the fewest

o coding is good, but not optimal.

solution was found by an MIT graduate student, David a class taught by Fano. The students were given the king the final or solving this problem (i.e., finding the a proof of optimality).

called Huffman coding.

Fano assigned a problem he hadn't been able to solve. o that occasionally.

article.

17:52 2021

CS61B: Lecture #39 13

CS61B: Lecture #39 18

Comparison

mbol	Frequency	Shannon-Fano	Huffman
Ŧ	0.35	00	0
4	0.17	01	100
/	0.17	10	101
Ĵ	0.16	110	110
	0.15	111	111

hannon-Fano coding takes a weighted average of 2.31 while Huffman coding takes 2.3.

17:52 2021

0.31

CS61B: Lecture #39 20

1.0

0.34

0.65

Example of LZW encoding

trivial mapping of codewords to single symbols.

ting a codeword that matches the longest possible prefix, maining input, add a new codeword Y that maps to the followed by the next input symbol.

llowing text as an example:

17:52 2021

cdabcdeabcdefabcdefgabcdefgh"

 $\mathbb{V}(B),$ the encoding of B. Our codewords will consist of des (0x00-0x7f).

CS61B: Lecture #39 22

LZW Coding

putting a codeword that matches the longest possible of the remaining input, add a new codeword Y that maps string X followed by the next input symbol.

LZW Step 1 labcdeabcdefabcdefgabcdefgh match in the table is 'a', so output 0x61, to the table with a new code.			
abcdeabcdefabcdefgabcdefgh natch in the table is 'a', so output 0x61, to the table with a new code.		LZW Step 1	
<i>C</i> (B) = 0×61	abcdeat natch in to the to	ocdefabcdefgabcdefgh the table is 'a', so output 0x61, able with a new code.	
		<i>C</i> (B) = 0x61	

LZW Step 0: Initial state

labcdeabcdefabcdefgabcdefgh

C(B) =

17:52 2021

bol in a node labeled with the symbol's relative frequency

0.65

ollowing until there is just one node:

0.35

Huffman Coding

he two nodes with smallest frequencies as children of a node whose frequency is the sum of those of the two ng combined.

dge to the left child be labeled 'O' and to the right be

tree shows the encoding for each symbol: concatenate els on the path from the root to the symbol. 17:52 2021 CS618: Lecture #39 19

17:52 2021

17:52 2021

CS61B: Lecture #39 24

LZW Step 3 labcdeabcdefabcdefgabcdefgh match in the table for remaining input is 'b', so output to the table with a new code.	LZW Step 5 labcdeabcdefabcdefgabcdefgh match in the table for remaining input is now 'c', so to the table with a new code.	LZW Step 6 labcdeabcdefabcdefgabcdefgh match in the table for remaining input is now 'abc', so la to the table with a new code.
C(B) = 0×616162	C(B) = 0×6161628163	C(B) = 0×616162816383
LZW Step 2 labcdeabcdefabcdefgh	LZW Step 4 labcdeabcdefabcdefgabcdefgh	LZW Step 6 abcdeabcdefabcdefgh
match in the table for remaining input is still 'a', so to the table with a new code.	match in the table for remaining input is now 'ab', so (half as many bits as 'ab'). to the table with a new code.	match in the table for remaining input is now ???, so to the table with a new code.
C(B) = 0x6161	C(B) = 0×61616281	C(B) = 0x6161628163??

LZW Step 7 abcdeabcdefabcdefgabcdefgh match in the table for remaining input is now 'd', so	Decompression h different input creates a different table, it would e need to provide the generated table in order to decode	LZW Decompression, Step 1 281638364 in the table, so add it to B.
	y, though, we don't!	previous codeword yet, so don't add anything to the
To the table with a new code.	t, starting with the same initial table we did before, x00-0x7f already assigned, we're given	
C(B) = 0x61616281638364	C(B) = 0x616162816383 find $B.$	Β = α
- What's next?	t starts with aab. What's next?	
- What is the complete encoding? (When reviewing, try to figure it out before looking at the next slide.)		
7:52 2021 CS618: Lecture #39 32	17:52 2021 C561B: Lecture #39 34	17:52 2021 C561B: Lecture #39 36
LZW Step 7 abcdeabcdefabcdefgabcdefgh match in the table for remaining input is now 'd', so	LZW Final State abcdeabcdefabcdefgabcdefgh (200 bits)	constructing the Coding Table (I) econstruct the table as we process each codeword in
o the table with a new code.	$\begin{array}{ c c c c c }\hline \hline \hline Code & String \\ \hline \hline 0x87 & abcde \\ \hline 0x88 & ea \\ \hline 0x89 & abcdef \\ \hline 0x8a & fa \\ \hline 0x8b & abcdefg \\ \hline 0x8b & abcdefg \\ \hline \end{array} C(B) = 0x616162816383648565 \\ 876689678b68 \\ \hline (120 \text{ bits}) \end{array}$	ter k of string Y. leword, X, in $C(B)$, add $S(X)$ to our result. e decoded two consecutive codewords, X_1 and X_2 , add a d that maps to $S(X_1) + S(X_2)_0$ apitulate a step in the compression operation that created
C(B) = 0x61616281638364	How might you represent this table to allow easily est prefix at each step?	first place. from left to right, the table will (almost) always already napping we need for the next codeword.
	17:52 2021 C5618: Lecture #39 33	17:52 2021 C\$618: Lecture #39 35

LZW Decompression, Step 3	LZW Decompression, Step 5	LZW Decompression, Step 6
281638364	81 63 8364	8163 83 64
in the table, so add it to B.	in the table, so add it to B.	pc' in the table, so add it to B.
codewords—S(0x61)='a' and S(0x62)='b'—so add 'ab' to	codewords—S(0x81)='ab' and S(0x63)='c'—so add 'abc'	codewords—S(0x63)='c' and S(0x83)='abc'—so add 'ca'
a new codeword.	as a new codeword.	as a new codeword.
B = aab		
H	B = aababc	B = aababcabc
17:52 2021 C5618: Lecture #39 38	17:52 2021 C5618: Lecture #39 40	17:52 2021 CS618: Lecture #39 42
LZW Decompression, Step 2	LZW Decompression, Step 4	LZW Decompression, Step 6
281638364	81638364	81638364
in the table so add it to B	h' in the table so add it to B	2 in the table so add it to B
codewords—S(0x61)='a' twice—so add 'aa' to the table	codewords—S(0x62)='b' and S(0x81)='ab'—so add 'ba' to	codewords—S(???)=??? and S(???)=???—so add ??? to
eword	a new codeword.	a new codeword.
		B = aababc???
17:52 2021 C5618: Lecture #39 37	17:52 2021 C561B: Lecture #39 39	17:52 2021 C5618: Lecture #39 41

constructing the Coding Table (II)	Tricky Decompression, Step 2	Tricky Decompression, Step 4
s slide, I said " the table will (almost) always already	082	82
happing we need"	in the table, so add it to B.	2) is not yet in the table. What now?
string B='cdcdcdc' as an example.	codewords—S(0x63)='c' and S(0x64)='d'—so add 'cd' to a new codeword	
code it, we end up with		-
1		
	B = cd	B = cdcd???
(/D) - 0(3)(40003		
- C(B) - 0x03048082		
		hat we could look <i>ahead</i> while coding, but can only look decoding.
L causes trouble		re out what 0x82 is going to be by looking back.
17:52 2021 C561B: Lecture #39 44	17:52 2021 C56JB: Lecture #39 46	17:52 2021 C5618: Lecture #39 48
LZW Decompression, Step 7	Tricky Decompression, Step 1	Tricky Decompression, Step 3
81638364	082	<u>)</u> 82
in the table, so add it to B.	in the table, so add it to B.	t in the table, so add it to B.
codewords—S(0x83)='abc' and S(0x64)='d'—so add 'abcd'	previous codeword yet, so don't add anything to the	codewords—S(0x64)='d' and S(0x80)='cd'—so add 'dc' to
as a new codeword.		
	B = c	
B = aababcabcd	H	
F I		
17:52 2021 C5618: Lecture #39 43	17:52 2021 C5618: Lecture #39 45	17:52 2021 C5618: Lecture #39 47

LZW Algorithm

d for its inventors: Lempel, Ziv, and Welch.

used at one time, but because of patent issues became ular (especially among open-source folks).

expired in 2003 and 2004.

the gif files, some PDF files, the BSD Unix compress sewhere.

merous other (and better) algorithms (such as those in ${
m p2}$).

ation here is considerably simplified.

fixed-length (8-bit) codewords, but the full algorithm variable-length codewords using (!) Huffman coding ing the compression).

lgorithm clears the table from time to time to get rid sed codewords.

17:52	2021
-------	------

CS61B: Lecture #39 50

Decompression, Step 4 (Second Try)

82

o be figured out).

ecoded S(0x80)="cd" and now have S(0x82)=Z, so will o the table as S(0x82).

with S(0x80) and therefore Z_0 must be 'c'!

) = S(0x80)+Z₀ = 'cdc'.

B = cdcdcdc

Some Thoughts

a compressed text doesn't result in much compression. be impossible to keep compressing a text? pu'd be able to compress any number of different messages

at takes no input and produces an output can be thought dings of that output.

he following question: Given a bitstream, what is the shortest program that can produce it?

ific bitstream, there is a specific answer!

p concept, known as Kolmogorov Complexity.

Some Thoughts

a compressed text doesn't result in much compression.

be impossible to keep compressing a text?

at takes no input and produces an output can be thought dings of that output.

he following question: Given a bitstream, what is the shortest program that can produce it?

ific bitstream, there is a specific answer!

p concept, known as Kolmogorov Complexity.

Git

uses a different scheme from LZW for compression: a of LZ77 and Huffman coding.

of like delta compression, but within the same text.

xt such as

ippi, two Mississippi

ng like

17:52 2021

ippi, two <11,7>

1,7> is intended to mean "the next 11 characters come t that ends 7 characters before this point."

symbols to the alphabet to represent these (length, lusions.

Huffman encode the result.

CS61B: Lecture #39 54

More Thoughts

weird that one can compress much at all.

000-character ASCII text (8000 bits), and suppose we mpress it by 50%.

 $^{\rm 000}$ distinct messages in 8000 bits, but only 2^{4000} possible 4000 bits.

latter what one's scheme, one can encode only 2^{-4000} of 8000-bit messsages by 50%! Yet we do it all the time.

texts have a great deal of redundancy (aka low information

igh entropy—such as random bits, previously compressed rypted texts—are nearly incompressible.

17:52 2021

CS61B: Lecture #39 52

Wrapping U	P			
	r			
pression saves space (and b	oandwidth) by exploiting redundancy			
1 Shannon-Fano coding rep	present individual symbols of			
nilar codes represents m	Itiple symbols with shorter			
mai codes represents m	ample symbols with shorter			
heir codewords to the tex	t being compressed.			
ession both uses redundan	cy and exploits the fact that			
imers of compressed data	(like humans) can't really use			
nation that could be encod	ed.			
17:52 2021	CS61B: Lecture #39 56			
] [
Lossy Compres	sion			
plications, like compressing	y video and audio streams, it			
ecessary to be able to repr	roduce the exact stream.			
refore get more compres	sion by throwing away some			
e is a limit to what human	senses respond to			
we don't been high fragment	senses respond to.			
Formate like TDEC AND -	MPA up long compandian			
uct output that is (hopefi	ully) imperceptibly different			
ginal at large savings in siz	e and bandwidth.			
more of this in EE120 and	other courses.			
17 50 0001				
17:52 2021	C561B: Lecture #39 55			