Compression and Git

1 hew object in the repository each time a changed file
is committed.

et crowded as a result.
e, it compresses each object.

d then (such as when sending or receiving from another
t packs objects together into a single file: a "packfile.”

sticking the files together, uses a technique called
pssion.

17:52 2021 CS61B: Lecture #39 2

Delta Compression (II)

0 versions
Vi v2
: fully open to my awful | My eyes are fully open to my awful

situation.

t once to Roderick and |I shall go at once to Roderick and
roration. I shall tell him | make him an oration.

'ed my forgotten moral | I shall tell him I've recovered my
forgotten moral senses,

and don't give twopence halfpenney
for any consequences.

Vi v2

1 lines from V2]| My eyes are fully open to my awful
situation.

T shall go at once to Roderick and
make him an oration.

T shall tell him I've recovered my
forgotten moral senses,

and don't give twopence halfpenney

for any consequences.
117:52 2021 CS61B: Lecture #39 4

Compression and Decompression

on algorithm converts a stream of symbols into another,
am.

lossless if the algorithm is invertible (no information

mbol is the bit:
100010011001000110011 '—' Compression b—’ 0000000100100011

00011 H Decompression H 00110000001100010011001000110011 ‘

wly replaced the 8-bit ASCII bit sequences for digits
:xample, the single character '0' is encoded as 0x30=0b00110000)
rinary-coded decimal).

-bit sequences codewords, which we associate with the
1e original, uncompressed text.

ir than 50% compression with English text.

117:52 2021 CS61B: Lecture #39 6

Lecture #39: Compression

resentation is largely taken from CS61B lectures by

17:52 2021 CS61B: Lecture #39 1

Delta Compression

ere will be many versions of a file in a Git repository:
nd previous edits of it, each in different commits.

keep track explicitly of which file came from where,
nard in general:

file is split into two, or two are spliced together?

ss that files with same name and (roughly) same size in
are probably versions of the same file.

1appens, store one of them as a pointer to the other,
changes.

117:52 2021 CS61B: Lecture #39 3

Two Unix Compression Programs

:37.pic.in # The GNU version of ZIP
1t37.pic.in # Another compression program
f.pic*
Size
(bytes)
;s61b cs61b 31065 Apr 27 23:36 lect37.pic.in
:s61b cs61b 10026 Apr 27 23:36 lect37.pic.in.bz2 # Roughly 1/3 size
:s61b cs61b 10270 Apr 27 23:36 lect37.pic.in.gz
;37 .pdf
. pdf*
:s61b cs61b 124665 Mar 30 13:46 lect37.pdf
;s61b cs61b 101125 Mar 30 13:46 lect37.pdf.gz # Roughly 81% size
;t37.pic.in.gz > lect37.pic.in.ungzip # Uncompress
pic.in lect37.pic.in.ungzip
No difference from original (lossless)
37.pic.in.gz > lect37.pic.in.gz.gz
".pic*gz
;s61b cs61b 10270 Apr 27 23:36 lect37.pic.in.gz
;s61b cs61b 10293 Apr 28 00:16 lect37.pic.in.gz.gz

117:52 2021 CS61B: Lecture #39 5

Prefix Free Codes

eeds pauses between codewords to prevent ambiguities.

ATH, BABE, or BATH.

is that Morse code allows many codewords to be prefixes
s, so that it's difficult to know when you have come to
ne.

s to devise prefix-free codes, in which no codeword is
nother.

ays knows when a codeword ends.

17:52 2021 CS61B: Lecture #39 8

Prefix-Free Examples

ding A Encoding B
1 space 111
o1 E 010
001 T 1000
0001 A 1010
00001 o] 1011
000001 I 1100

, "I ATE" is unambiguously

00100101 in Encoding A, or
101000010 in Encoding B.

fructures might you use to. ..
i HashMap or array Decode?

117:52 2021

CS61B: Lecture #39 10

Shannon-Fano Coding

:quency | Encoding
0.35

017 w k] VDD

0.17
0.16
0.15

:ncies of all characters in text to be compressed.
:d characters into two groups of roughly equal frequency.
group with leading O, right group with leading 1.

all groups are of size 1.

117:52 2021 CS61B: Lecture #39 12

Example: Morse Code

N<XxXE<cC

ple to transmit.

three symbols:
and pause.
tween codewords.

4O PO OVOZSTrARU4HIOTMOTAO®>
VWOoONOCODA,WN=O

17:52 2021 CS61B: Lecture #39 7

Prefix-Free Examples

ding A Encoding B
1 space 111
01 E 010
001 T 1000
0001 A 1010
00001 o] 1011
000001 I 1100

,"T ATE" is unambiguously

00100101 in Encoding A, or
101000010 in Encoding B.

fructures might you use fo...
:ode?

117:52 2021

CS61B: Lecture #39 9

Prefix-Free Examples

ding A Encoding B
1 space 111
01 E 010
001 T 1000
0001 A 1010
00001 o] 1011
000001 I 1100

,"T ATE" is unambiguously

00100101 in Encoding A, or
101000010 in Encoding B.

fructures might you use fo...
i HashMap or array Decode? Ans: Trie

117:52 2021 CS61B: Lecture #39 11

Shannon-Fano Coding

Shannon-Fano Coding

‘equency | Encoding
0.35 00
0.17 01
0.17 10
0.16 110
0.15 11

equency | Encoding

0.35 00 0

0.17 01 1

0.17 1. o0/ \!

0.16 1. w] | DS
0.15 1.

ncies of all characters in text to be compressed.
td characters into tfwo groups of roughly equal frequency.
group with leading O, right group with leading 1.

all groups are of size 1.

17:52 2021 CS61B: Lecture #39 14

:ncies of all characters in text to be compressed.
:d characters into two groups of roughly equal frequency.
group with leading O, right group with leading 1.

all groups are of size 1.

117:52 2021 CS61B: Lecture #39 16

Huffman Coding

03t
o/ \1
= e B/ S
015 035 017 0.17
bol inanode labeled with the symbol's relative frequency

‘ollowing until there is just one node:

he two nodes with smallest frequencies as children of a
: node whose frequency is the sum of those of the two
ng combined.

dge to the left child be labeled '0' and to the right be

j tree shows the encoding for each symbol: concatenate
els on the path from the root to the symbol.

117:52 2021 CS61B: Lecture #39 18

Shannon-Fano Coding

equency | Encoding

0.35 0.

0.17 0... ° 1

0.17 L. w k|| | VD
0.16 L..

0.15 Lo

ncies of all characters in text to be compressed.
d characters into two groups of roughly equal frequency.
group with leading O, right group with leading 1.

all groups are of size 1.

17:52 2021 CS61B: Lecture #39 13

Shannon-Fano Coding

‘equency | Encoding o
0.35 00 0 1
0.17 01 @ 0
0.7 10 VRN !
0.16 1...
0.15 11...

:ncies of all characters in text to be compressed.
:d characters into two groups of roughly equal frequency.
group with leading O, right group with leading 1.

all groups are of size 1.

117:52 2021 CS61B: Lecture #39 15

Can We Do Better?

encoding of symbols to codewords that are bitstrings
r a particular text if it encodes the text in the fewest

lo coding is good, but not optimal.

solution was found by an MIT graduate student, David
a class taught by Fano. The students were given the
king the final or solving this problem (i.e., finding the
| a proof of optimality).

i called Huffman coding.

Fano assigned a problem he hadn't been able to solve.
lo that occasionally.

iarticle.

117:52 2021 CS61B: Lecture #39 17

https://www.google.com/url?q=http://www.huffmancoding.com/my-uncle/scientific-american&sa=D&ust=1588058638808000&usg=AFQjCNEMsHI2cxxuHcqgxstnw8GHCuWylw

Comparison

Example of LZW encoding

LZW Step 1

p.31

035
bol in a node labeled with the symbol's relative frequency

ollowing until there is just one node:

he two nodes with smallest frequencies as children of a
node whose frequency is the sum of those of the two

ng combined.

dge to the left child be labeled ‘0" and to the right be

g tree shows the encoding for each symbol: concatenate
els on the path from the root to the symbol.

17:52 2021 CS61B: Lecture #39 19

IS Wiy N Y S

ave used systems with one codeword per symbol.
r compression, must encoded multiple symbols per codeword.
w us to code strings such as

»bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
ibababababababababababababababababa
rabcdefabcdefgabcdefghabcdefghiabed

t can be than less than 43 x weighted average symbol

ling, we create new codewords as we go along, each
\g to substrings of the text:
1 a trivial mapping of codewords to single symbols.

‘putting a codeword that matches the longest possible
of the remaining input, add a hew codeword Y that maps
»string X followed by the next input symbol.

117:52 2021 CS61B: Lecture #39 21

mbol | Frequency Shannon-Fano | Huffman trivial mapping of codewords to single symbols. labcdeabcedefabedefgabedefgh
. 0.35 00 0 "ting a codeword that matches the longest possible prefix, match in the table is 'a’, so output Ox61,
- § maining input, add a new codeword Y that maps to the +o the table with d
= 0.17 01 100 followed by the next input symbol. j @ Table with a new code.
v 0.17 10 101 .) —
llowing text as an example: L
L 0.16 110 110
cdabcdeabcdefabcdefgabcdefgh"]
S 0.15 111 111 L, .)) — C(B) = Ox61
(B), the encoding of B. Our codewords will consist of -
des (0x00-0x7f). —
phannon-Fano coding takes a weighted average of 2.31 es (O x7f) L
while Huffman coding takes 2.3. L
17:52 2021 CS61B: Lecture #39 20 117:52 2021 CS61B: Lecture #39 22 117:52 2021 CS61B: Lecture #39 24
Huffman Codin LZW Codin LZW Step 0: Initial state
9 9 P

labcdeabcdefabcedefgabedefgh

C(B) =

117:52 2021 CS61B: Lecture #39 23

LZW Step 3

abcdeabcedefabcedefgabedefgh

match in the table for remaining input is 'b’, so output

tto the table with a hew code.

C(B) = 0x616162

17:52 2021 CS61B: Lecture #39 26

LZW Step 5

labcdeabcdefabedefgabedefgh

match in the table for remaining input is now 'c’, so

to the table with a new code.

L C(B) = 0x6161628163

117:52 2021 CS61B: Lecture #39 28

LZW Step 6

labcdeabcedefabcedefgabedefgh

match in the table for remaining input is now ‘abc’, so

Jd to the table with a new code.

C(B) = 0x616162816383

117:52 2021 CS61B: Lecture #39 30

LZW Step 2
abcdeabcdefabcedefgabedefgh

match in the fable for remaining input is still 'a’, so

tto the table with a hew code.

C(B) = Ox6161

17:52 2021 CS61B: Lecture #39 25

LZW Step 4

labcdeabcedefabedefgabedefgh

match in the table for remaining input is now ‘'ab’, so
(half as many bits as 'ab’).

: to the table with a new code.

C(B) = 0x61616281

117:52 2021 CS61B: Lecture #39 27

LZW Step 6

abcdeabcedefabcdefgabedefgh

match in the table for remaining input is now 2?2, so

to the table with a new code.

C(B) = 0x6161628163??

117:52 2021 CS61B: Lecture #39 29

LZW Step 7

abcdeabcedefabcedefgabedefgh

match in the table for remaining input is now 'd’, so

to the table with a hew code.

Decompression

h different input creates a different table, it would
> need to provide the generated table in order to decode

y, though, we don't!

t, starting with the same initial table we did before,
x00-0x7f already assigned, we're given

C(B) = 0x616162816333

LZW Decompression, Step 1

281638364
in the table, so add it to B.
| previous codeword yet, so don't add anything to the

abcdeabcdefabedefgabedefgh

match in the table for remaining input is now 'd’, so

to the table with a hew code.

— C(B) = 0x61616281638364

17:52 2021 CS61B: Lecture #39 31

(200 bits)

Code String
0x87 abcde
| foxes |ea
T [oxse abedef C(B) = 0x616162816333648565
T Toxsa fa 6659673068
: 0x8b abcdefg (120 bits)
0x8c ga
Il 0x8d abcdefgh|

i How might you represent this table to allow easily
est prefix at each step?

117:52 2021 CS61B: Lecture #39 33

|| L H B=a
C(B) = 0x61616281638364 find B. L
|~ What's next? t starts with aab. What's next? L
| | = What is the complete encoding? (When reviewing, B
|| fryto figure it out before looking at the next slide.)
17:52 2021 CS61B: Lecture #39 32 117:52 2021 CS61B: Lecture #39 34 117:52 2021 CS61B: Lecture #39 36
LZW Step 7 LZW Final State iconstructing the Coding Table (TI)

econstruct the table as we process each codeword in

:an “the symbols encoded by codeword X," and let Y},
ter k of string Y.

leword, X, in C'(B), add S(X) to our result.

z decoded two consecutive codewords, X; and X,, add a
d that maps to S(Xl) + S(XQ)()

apitulate a step in the compression operation that created
first place.

from left to right, the table will (almost) always already
napping we need for the next codeword.

117:52 2021 CS61B: Lecture #39 35

LZW Decompression, Step 3

b/81638364
in the table, so add it to B.

codewords—S(0x61)="a’ and S(0x62)="b'—so add 'ab’ to
a new codeword.

B = aab

17:52 2021 CS61B: Lecture #39 38

LZW Decompression, Step 5

[63/8364
in the table, so add it to B.

» codewords—S(0x81)='ab’ and S(0x63)='c'—so add ‘abc’
as a new codeword.

B = aababc

117:52 2021 CS61B: Lecture #39 40

LZW Decompression, Step 6

(8364
oc' in the table, so add it to B.

» codewords—S(0x63)="c' and S(0x83)='abc'—so add 'ca’
as a new codeword.

— B = aababcabc

117:52 2021 CS61B: Lecture #39 42

LZW Decompression, Step 2

R81638364

in the table, so add it to B.

codewords—S(0x61)="a’ twice—so add 'ad’ to the table
eword

i B=aa

17:52 2021 CS61B: Lecture #39 37

LZW Decompression, Step 4

[81]638364
o' in the table, so add it to B.

codewords—S(0x62)="b" and S(0x81)="ab'—so add 'ba’ to
a new codeword.

— B = aabab

117:52 2021 CS61B: Lecture #39 39

LZW Decompression, Step 6

(8364
12 in the table, so add it to B.

1 codewords—S(???)=2?? and S(???)=???—so0 add ??? to
a new codeword.

— B = aababc???

117:52 2021 CS61B: Lecture #39 41

constructing the Coding Table (IT)

5 slide, I said "...the table will (almost) always already
napping we need..."

ly, there are cases where it doesn't.
string B="cdcdcdc’ as an example.

tode it, we end up with

C(B) = 0x63648082

causes trouble. ..

17:52 2021 CS61B: Lecture #39 44

Tricky Decompression, Step 2

082
in the table, so add it to B.

) codewords—S(0x63)="c’ and S(0x64)="d'—so add 'cd’ to
a new codeword

117:52 2021 CS61B: Lecture #39 46

Tricky Decompression, Step 4

2) is not yet in the table. What now?

H B = cdcd???

nat we could look ahead while coding, but can only look
decoding.

Ire out what 0x82 is going to be by looking back.

117:52 2021 CS61B: Lecture #39 48

LZW Decompression, Step 7

[64]
in the table, so add it to B.

las a hew codeword.

B = aababcabcd

17:52 2021 CS61B: Lecture #39 43

codewords—S(0x83)="abc’' and S(0x64)="d'—so add ‘abcd’

Tricky Decompression, Step 1

082

in the table, so add it to B.
| previous codeword yet, so don't add anything to the

117:52 2021 CS61B: Lecture #39 45

Tricky Decompression, Step 3

)82
1" in the table, so add it to B.

codewords—S(0x64)="d’ and S(0x80)="cd'—so add 'dc’ to
a new codeword

B = cdcd

117:52 2021 CS61B: Lecture #39 47

LZW Algorithm

d for its inventors: Lempel, Ziv, and Welch.

Ised at one time, but because of patent issues became
ular (especially among open-source folks).

expired in 2003 and 2004.

the .gif files, some PDF files, the BSD Unix compress
sewhere.

merous other (and better) algorithms (such as those in
p2).

ntion here is considerably simplified.

fixed-length (8-bit) codewords, but the full algorithm
variable-length codewords using (1) Huffman coding
ing the compression).

Igorithm clears the table from time to time to get rid
sed codewords.

17:52 2021 CS61B: Lecture #39 50

Some Thoughts

a compressed text doesn't result in much compression.
be impossible to keep compressing a text?

»u'd be able to compress any number of different messages

\at takes no input and produces an output can be thought
»dings of that output.

he following question: Given a bitstream, what is the
2 shortest program that can produce it?

ific bitstream, there is a specific answer!
p concept, known as Kolmogorov Complexityl.

117:52 2021 CS61B: Lecture #39 52

Git

uses a different scheme from LZW for compression: a
of LZ77 and Huffman coding.
of like delta compression, but within the same text.

xt such as

iippi, two Mississippi
ng like

iippi, two <11,7>

l1,7> is intended to mean “the next 11 characters come
¢t that ends 7 characters before this point.”

' symbols to the alphabet to represent these (length,
lusions.

Huffman encode the result.

117:52 2021 CS61B: Lecture #39 54

Decompression, Step 4 (Second Try)

o be figured out).

ecoded S(0x80)="cd" and now have S(0x82)=Z, so will
p the table as S(0x82).

with S(0x80) and therefore Z, must be 'c'l
) = S(0x80)+Z, = 'cdc'.

H B = cdcdcdc

17:52 2021 CS61B: Lecture #39 49

Some Thoughts

a compressed text doesn't result in much compression.
be impossible to keep compressing a text?

\at takes no input and produces an output can be thought
»dings of that output.

he following question: Given a bitstream, what is the
2 shortest program that can produce it?

ific bitstream, there is a specific answer!

p concept, known as Kolmogorov Complexity.

117:52 2021 CS61B: Lecture #39 51

More Thoughts

weird that one can compress much at all.

)00-character ASCII text (8000 bits), and suppose we
ympress it by 50%.

0 distinct messages in 8000 bits, but only 2'°% possible
4000 bits.

\atter what one's scheme, one can encode only 27400 of
8000-bit messsages by 50%! Yet we do it all the time.

texts have a great deal of redundancy (aka low information

igh entropy—such as random bits, previously compressed
:rypted texts—are nearly incompressible.

117:52 2021 CS61B: Lecture #39 53

https://www.google.com/url?q=http://en.wikipedia.org/wiki/Kolmogorov_complexity&sa=D&ust=1588185388277000&usg=AFQjCNH81RFZvcCnRIuUekrslD5EbctbwQ
https://www.google.com/url?q=http://en.wikipedia.org/wiki/Kolmogorov_complexity&sa=D&ust=1588185388277000&usg=AFQjCNH81RFZvcCnRIuUekrslD5EbctbwQ

Wrapping Up
pression saves space (and bandwidth) by exploiting redundancy

I Shannon-Fano coding represent individual symbols of
h shorter codewords.

milar codes represents multiple symbols with shorter

heir codewords to the text being compressed.

ession both uses redundancy and exploits the fact that
imers of compressed data (like humans) can't really use
nation that could be encoded.

17:52 2021 CS61B: Lecture #39 56

Lossy Compression

plications, like compressing video and audio streams, it
ecessary to be able to reproduce the exact stream.

refore get more compression by throwing away some

e is a limit to what human senses respond to.
we don't hear high frequencies, or see tiny color variations.

ormats like JPEG, MP3, or MP4 use lossy compression
uct output that is (hopefully) imperceptibly different
ginal at large savings in size and bandwidth.

more of this in EE120 and other courses.

17:52 2021 CS61B: Lecture #39 55

	Lecture #39: Compression
	Compression and Git
	Delta Compression
	Delta Compression (II)
	Two Unix Compression Programs
	Compression and Decompression
	Example: Morse Code
	Prefix Free Codes
	Prefix-Free Examples
	Shannon-Fano Coding
	Can We Do Better?
	Huffman Coding
	Comparison
	LZW Coding
	Example of LZW encoding
	LZW Step 0: Initial state
	LZW Step 1
	LZW Step 2
	LZW Step 3
	LZW Step 4
	LZW Step 5
	LZW Step 6
	LZW Step 7
	LZW Final State
	Decompression
	Reconstructing the Coding Table (I)
	LZW Decompression, Step 1
	LZW Decompression, Step 2
	LZW Decompression, Step 3
	LZW Decompression, Step 4
	LZW Decompression, Step 5
	LZW Decompression, Step 6
	LZW Decompression, Step 7
	Reconstructing the Coding Table (II)
	Tricky Decompression, Step 1
	Tricky Decompression, Step 2
	Tricky Decompression, Step 3
	Tricky Decompression, Step 4
	Tricky Decompression, Step 4 (Second Try)
	LZW Algorithm
	Some Thoughts
	More Thoughts
	Git
	Lossy Compression
	Wrapping Up

