
Lecture #39: Compression

presentation is largely taken from CS61B lectures by

17:17:52 2021 CS61B: Lecture #39 1

Compression and Git

• creates a new object in the repository each time a changed file
directory is committed.

• get crowded as a result.

• space, it compresses each object.

• and then (such as when sending or receiving from another
repository), it packs objects together into a single file: a “packfile.”

• just sticking the files together, uses a technique called
compression.

17:17:52 2021 CS61B: Lecture #39 2

Delta Compression

• there will be many versions of a file in a Git repository:
latest, and previous edits of it, each in different commits.

• doesn’t keep track explicitly of which file came from where,
that’s hard in general:

a file is split into two, or two are spliced together?

• guess that files with same name and (roughly) same size in
commits are probably versions of the same file.

• that happens, store one of them as a pointer to the other,
of changes.

17:17:52 2021 CS61B: Lecture #39 3

Delta Compression (II)

• two versions
V1 V2

are fully open to my awful

at once to Roderick and
an oration. I shall tell him

recovered my forgotten moral

My eyes are fully open to my awful
situation.
I shall go at once to Roderick and
make him an oration.
I shall tell him I’ve recovered my
forgotten moral senses,
and don’t give twopence halfpenney
for any consequences.

V1 V2
6 lines from V2] My eyes are fully open to my awful

situation.
I shall go at once to Roderick and
make him an oration.
I shall tell him I’ve recovered my
forgotten moral senses,
and don’t give twopence halfpenney
for any consequences.

17:17:52 2021 CS61B: Lecture #39 4

Two Unix Compression Programs

lect37.pic.in # The GNU version of ZIP

lect37.pic.in # Another compression program

lect37.pic*

Size

(bytes)

cs61b cs61b 31065 Apr 27 23:36 lect37.pic.in

cs61b cs61b 10026 Apr 27 23:36 lect37.pic.in.bz2 # Roughly 1/3 size

cs61b cs61b 10270 Apr 27 23:36 lect37.pic.in.gz

lect37.pdf

lect37.pdf*

cs61b cs61b 124665 Mar 30 13:46 lect37.pdf

cs61b cs61b 101125 Mar 30 13:46 lect37.pdf.gz # Roughly 81% size

lect37.pic.in.gz > lect37.pic.in.ungzip # Uncompress

lect37.pic.in lect37.pic.in.ungzip

No difference from original (lossless)

lect37.pic.in.gz > lect37.pic.in.gz.gz

lect37.pic*gz

cs61b cs61b 10270 Apr 27 23:36 lect37.pic.in.gz

cs61b cs61b 10293 Apr 28 00:16 lect37.pic.in.gz.gz

17:17:52 2021 CS61B: Lecture #39 5

Compression and Decompression

• compression algorithm converts a stream of symbols into another,
stream.

• called lossless if the algorithm is invertible (no information

• symbol is the bit:

00110000001100010011001000110011 Compression 0000000100100011

0000000100100011 Decompression 00110000001100010011001000110011

• simply replaced the 8-bit ASCII bit sequences for digits
for example, the single character ‘0’ is encoded as 0x30=0b00110000)

(binary-coded decimal).

• 4-bit sequences codewords, which we associate with the
the original, uncompressed text.

• better than 50% compression with English text.

17:17:52 2021 CS61B: Lecture #39 6

Example: Morse Code

• simple to transmit.

• use three symbols:
dah, and pause.
between codewords.

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T

U
V
W
X
Y
Z

0
1
2
3
4
5
6
7
8
9

17:17:52 2021 CS61B: Lecture #39 7

Prefix Free Codes

• code needs pauses between codewords to prevent ambiguities.

• Otherwise,

DEATH, BABE, or BATH.

• problem is that Morse code allows many codewords to be prefixes
ones, so that it’s difficult to know when you have come to
one.

• Alternative is to devise prefix-free codes, in which no codeword is
another.

• always knows when a codeword ends.

17:17:52 2021 CS61B: Lecture #39 8

Prefix-Free Examples

Encoding A

1

01

001

0001

00001

000001

Encoding B

space 111

E 010

T 1000

A 1010

O 1011

I 1100

. . .

• example, “I ATE“ is unambiguously

1000100101 in Encoding A, or

10101000010 in Encoding B.

• structures might you use to. . .
Decode?

17:17:52 2021 CS61B: Lecture #39 9

Prefix-Free Examples

Encoding A

1

01

001

0001

00001

000001

Encoding B

space 111

E 010

T 1000

A 1010

O 1011

I 1100

. . .
• example, “I ATE“ is unambiguously

1000100101 in Encoding A, or

10101000010 in Encoding B.

• structures might you use to. . .
Ans: HashMap or array Decode?

17:17:52 2021 CS61B: Lecture #39 10

Prefix-Free Examples

Encoding A

1

01

001

0001

00001

000001

Encoding B

space 111

E 010

T 1000

A 1010

O 1011

I 1100

. . .

• example, “I ATE“ is unambiguously

1000100101 in Encoding A, or

10101000010 in Encoding B.

• structures might you use to. . .
Ans: HashMap or array Decode? Ans: Trie

17:17:52 2021 CS61B: Lecture #39 11

Shannon-Fano Coding

Frequency Encoding

R 0.35

U 0.17

D 0.17

O 0.16

P 0.15

R U D OP

• frequencies of all characters in text to be compressed.

• grouped characters into two groups of roughly equal frequency.

• left group with leading 0, right group with leading 1.

• until all groups are of size 1.

17:17:52 2021 CS61B: Lecture #39 12

Shannon-Fano Coding

Frequency Encoding

R 0.35 0. . .

U 0.17 0. . .

D 0.17 1. . .

O 0.16 1. . .

P 0.15 1. . .

R U D OP

0 1

• frequencies of all characters in text to be compressed.

• grouped characters into two groups of roughly equal frequency.

• left group with leading 0, right group with leading 1.

• until all groups are of size 1.

17:17:52 2021 CS61B: Lecture #39 13

Shannon-Fano Coding

Frequency Encoding

R 0.35 00

U 0.17 01

D 0.17 1. . .

O 0.16 1. . .

P 0.15 1. . .

R U D OP

0 1

0

1

• frequencies of all characters in text to be compressed.

• grouped characters into two groups of roughly equal frequency.

• left group with leading 0, right group with leading 1.

• until all groups are of size 1.

17:17:52 2021 CS61B: Lecture #39 14

Shannon-Fano Coding

Frequency Encoding

R 0.35 00

U 0.17 01

D 0.17 10

O 0.16 11. . .

P 0.15 11. . .

R U D OP
0 1 0 1

0 1

• frequencies of all characters in text to be compressed.

• grouped characters into two groups of roughly equal frequency.

• left group with leading 0, right group with leading 1.

• until all groups are of size 1.

17:17:52 2021 CS61B: Lecture #39 15

Shannon-Fano Coding

Frequency Encoding

R 0.35 00

U 0.17 01

D 0.17 10

O 0.16 110

P 0.15 111

R U D O P

0 1

0 1

0

1

0 1

• frequencies of all characters in text to be compressed.
• grouped characters into two groups of roughly equal frequency.

• left group with leading 0, right group with leading 1.

• until all groups are of size 1.

17:17:52 2021 CS61B: Lecture #39 16

Can We Do Better?

• an encoding of symbols to codewords that are bitstrings
for a particular text if it encodes the text in the fewest

• Shannon-Fano coding is good, but not optimal.

• optimal solution was found by an MIT graduate student, David
in a class taught by Fano. The students were given the
taking the final or solving this problem (i.e., finding the
and a proof of optimality).

• is called Huffman coding.

• right: Fano assigned a problem he hadn’t been able to solve.
do that occasionally.

• this article.

17:17:52 2021 CS61B: Lecture #39 17

Huffman Coding

R U D O

0.16

P

0.15

R

0.35

U

0.17

D

0.17

O P

0.31

0 1

R

0.35

U D O P

0.31

0 1

0.34

0 1

• symbol in a node labeled with the symbol’s relative frequency
before).

• following until there is just one node:

the two nodes with smallest frequencies as children of a
single node whose frequency is the sum of those of the two
being combined.

edge to the left child be labeled ‘0’ and to the right be
‘1’.

• resulting tree shows the encoding for each symbol: concatenate
labels on the path from the root to the symbol.

17:17:52 2021 CS61B: Lecture #39 18

https://www.google.com/url?q=http://www.huffmancoding.com/my-uncle/scientific-american&sa=D&ust=1588058638808000&usg=AFQjCNEMsHI2cxxuHcqgxstnw8GHCuWylw

Huffman Coding

R U D O P

0.31

0 1

R

0.35

U D O P

0.31

0 1

0.34

0 1

0.65

0 1

R U D O P

0.31

0 1

0.34

0 1

0.65

0 1

1.0

0

1

• symbol in a node labeled with the symbol’s relative frequency
before).

• following until there is just one node:

the two nodes with smallest frequencies as children of a
single node whose frequency is the sum of those of the two
being combined.

edge to the left child be labeled ‘0’ and to the right be
‘1’.

• resulting tree shows the encoding for each symbol: concatenate
labels on the path from the root to the symbol.

17:17:52 2021 CS61B: Lecture #39 19

Comparison

Symbol Frequency Shannon-Fano Huffman

R 0.35 00 0

U 0.17 01 100

D 0.17 10 101

O 0.16 110 110

P 0.15 111 111

case, Shannon-Fano coding takes a weighted average of 2.31
symbol, while Huffman coding takes 2.3.

17:17:52 2021 CS61B: Lecture #39 20

LZW Coding

• have used systems with one codeword per symbol.

• better compression, must encodedmultiple symbols per codeword.

• allow us to code strings such as

bbb

aba

abcdabcdeabcdefabcdefgabcdefghabcdefghiabcd

that can be than less than 43 × weighted average symbol

• coding, we create new codewords as we go along, each
corresponding to substrings of the text:

with a trivial mapping of codewords to single symbols.

outputting a codeword that matches the longest possible
X, of the remaining input, add a new codeword Y that maps
substring X followed by the next input symbol.

17:17:52 2021 CS61B: Lecture #39 21

Example of LZW encoding

• a trivial mapping of codewords to single symbols.

• outputting a codeword that matches the longest possible prefix,
remaining input, add a new codeword Y that maps to the
X followed by the next input symbol.

following text as an example:

B="aababcabcdabcdeabcdefabcdefgabcdefgh"

C(B), the encoding of B. Our codewords will consist of
codes (0x00–0x7f).

17:17:52 2021 CS61B: Lecture #39 22

LZW Step 0: Initial state

ababcabcdabcdeabcdefabcdefgabcdefgh

C(B) =

17:17:52 2021 CS61B: Lecture #39 23

LZW Step 1

ababcabcdabcdeabcdefabcdefgabcdefgh

• prefix match in the table is ‘a’, so output 0x61,

• to the table with a new code.

String

C(B) = 0x61

17:17:52 2021 CS61B: Lecture #39 24

LZW Step 2

babcabcdabcdeabcdefabcdefgabcdefgh

• prefix match in the table for remaining input is still ‘a’, so
0x61,

• to the table with a new code.

String

C(B) = 0x6161

17:17:52 2021 CS61B: Lecture #39 25

LZW Step 3

abcabcdabcdeabcdefabcdefgabcdefgh

• prefix match in the table for remaining input is ‘b’, so output

• to the table with a new code.

String

C(B) = 0x616162

17:17:52 2021 CS61B: Lecture #39 26

LZW Step 4

cabcdabcdeabcdefabcdefgabcdefgh

• prefix match in the table for remaining input is now ‘ab’, so
0x81 (half as many bits as ‘ab’).

• c to the table with a new code.

String

C(B) = 0x61616281

17:17:52 2021 CS61B: Lecture #39 27

LZW Step 5

abcdabcdeabcdefabcdefgabcdefgh

• prefix match in the table for remaining input is now ‘c’, so
0x63

• to the table with a new code.

String

C(B) = 0x6161628163

17:17:52 2021 CS61B: Lecture #39 28

LZW Step 6

abcdabcdeabcdefabcdefgabcdefgh

• prefix match in the table for remaining input is now ???, so

• ??? to the table with a new code.

String

C(B) = 0x6161628163??

17:17:52 2021 CS61B: Lecture #39 29

LZW Step 6

abc dabcdeabcdefabcdefgabcdefgh

• prefix match in the table for remaining input is now ‘abc’, so
0x83

• abc d to the table with a new code.

String

C(B) = 0x616162816383

17:17:52 2021 CS61B: Lecture #39 30

LZW Step 7

d abcdeabcdefabcdefgabcdefgh

• prefix match in the table for remaining input is now ‘d’, so
0x64

• ‘da’ to the table with a new code.

String

C(B) = 0x61616281638364

17:17:52 2021 CS61B: Lecture #39 31

LZW Step 7

d abcdeabcdefabcdefgabcdefgh

• prefix match in the table for remaining input is now ‘d’, so
0x64

• ‘da’ to the table with a new code.

String

C(B) = 0x61616281638364

– What’s next?

– What is the complete encoding? (When reviewing,
try to figure it out before looking at the next slide.)

17:17:52 2021 CS61B: Lecture #39 32

LZW Final State

aababcabcdabcdeabcdefabcdefgabcdefgh (200 bits)

Code String

0x87 abcde

0x88 ea

0x89 abcdef

0x8a fa

0x8b abcdefg

0x8c ga

0x8d abcdefgh

C(B) = 0x616162816383648565

876689678b68

(120 bits)

about: How might you represent this table to allow easily
longest prefix at each step?

17:17:52 2021 CS61B: Lecture #39 33

Decompression

• each different input creates a different table, it would
we need to provide the generated table in order to decode

message.

• Interestingly, though, we don’t!

• that, starting with the same initial table we did before,
0x00–0x7f already assigned, we’re given

C(B) = 0x616162816383

to find B.

• see it starts with aab. What’s next?

17:17:52 2021 CS61B: Lecture #39 34

Reconstructing the Coding Table (I)

• reconstruct the table as we process each codeword in

• mean “the symbols encoded by codeword X ,” and let Yk

character k of string Y .

• codeword, X , in C(B), add S(X) to our result.

• we decoded two consecutive codewords, X1 and X2, add a
codeword that maps to S(X1) + S(X2)0

• recapitulate a step in the compression operation that created
the first place.

• go from left to right, the table will (almost) always already
the mapping we need for the next codeword.

17:17:52 2021 CS61B: Lecture #39 35

LZW Decompression, Step 1

616281638364

• ‘a’ in the table, so add it to B.

• a previous codeword yet, so don’t add anything to the

String

B = a

17:17:52 2021 CS61B: Lecture #39 36

LZW Decompression, Step 2

6281638364

• ‘a’ in the table, so add it to B.

• two codewords—S(0x61)=’a’ twice—so add ‘aa’ to the table
codeword

String

B = aa

17:17:52 2021 CS61B: Lecture #39 37

LZW Decompression, Step 3

6281638364

• ‘b’ in the table, so add it to B.

• two codewords—S(0x61)=’a’ and S(0x62)=’b’—so add ‘ab’ to
as a new codeword.

String

B = aab

17:17:52 2021 CS61B: Lecture #39 38

LZW Decompression, Step 4

616162 81638364

• ‘ab’ in the table, so add it to B.

• two codewords—S(0x62)=’b’ and S(0x81)=’ab’—so add ‘ba’ to
as a new codeword.

String

B = aabab

17:17:52 2021 CS61B: Lecture #39 39

LZW Decompression, Step 5

61616281 638364

• ‘c’ in the table, so add it to B.

• two codewords—S(0x81)=’ab’ and S(0x63)=’c’—so add ‘abc’
table as a new codeword.

String

B = aababc

17:17:52 2021 CS61B: Lecture #39 40

LZW Decompression, Step 6

6161628163 8364

• ??? in the table, so add it to B.

• two codewords—S(???)=??? and S(???)=???—so add ??? to
as a new codeword.

String

B = aababc???

17:17:52 2021 CS61B: Lecture #39 41

LZW Decompression, Step 6

6161628163 8364

• ‘abc’ in the table, so add it to B.

• two codewords—S(0x63)=’c’ and S(0x83)=’abc’—so add ‘ca’
table as a new codeword.

String

B = aababcabc

17:17:52 2021 CS61B: Lecture #39 42

LZW Decompression, Step 7

616162816383 64

• ‘d’ in the table, so add it to B.

• two codewords—S(0x83)=’abc’ and S(0x64)=’d’—so add ‘abcd’
table as a new codeword.

String

B = aababcabcd

17:17:52 2021 CS61B: Lecture #39 43

Reconstructing the Coding Table (II)

• previous slide, I said “. . . the table will (almost) always already
the mapping we need. . . ”

• Unfortunately, there are cases where it doesn’t.

• the string B=’cdcdcdc’ as an example.

• encode it, we end up with

C(B) = 0x63648082

• decoding causes trouble. . .

17:17:52 2021 CS61B: Lecture #39 44

Tricky Decompression, Step 1

648082

• ‘c’ in the table, so add it to B.

• a previous codeword yet, so don’t add anything to the

String

B = c

17:17:52 2021 CS61B: Lecture #39 45

Tricky Decompression, Step 2

8082

• ‘d’ in the table, so add it to B.

• two codewords—S(0x63)=’c’ and S(0x64)=’d’—so add ‘cd’ to
as a new codeword

String

B = cd

17:17:52 2021 CS61B: Lecture #39 46

Tricky Decompression, Step 3

8082

• ‘cd’ in the table, so add it to B.

• two codewords—S(0x64)=’d’ and S(0x80)=’cd’—so add ‘dc’ to
as a new codeword

String

B = cdcd

17:17:52 2021 CS61B: Lecture #39 47

Tricky Decompression, Step 4

636480 82

• 0x82) is not yet in the table. What now?

B = cdcd???

• that we could look ahead while coding, but can only look
when decoding.

• figure out what 0x82 is going to be by looking back.

17:17:52 2021 CS61B: Lecture #39 48

Tricky Decompression, Step 4 (Second Try)

636480 82

• (to be figured out).

• decoded S(0x80)="cd" and now have S(0x82)=Z, so will
to the table as S(0x82).

• starts with S(0x80) and therefore Z0 must be ’c’!

• S(0x82) = S(0x80)+Z0 = ’cdc’.

B = cdcdcdc

17:17:52 2021 CS61B: Lecture #39 49

LZW Algorithm

• named for its inventors: Lempel, Ziv, and Welch.

• widely used at one time, but because of patent issues became
unpopular (especially among open-source folks).

• patents expired in 2003 and 2004.

• in the .gif files, some PDF files, the BSD Unix compress

elsewhere.

• numerous other (and better) algorithms (such as those in
bzip2).

• presentation here is considerably simplified.

used fixed-length (8-bit) codewords, but the full algorithm
produces variable-length codewords using (!) Huffman coding
(compressing the compression).

full algorithm clears the table from time to time to get rid
little-used codewords.

17:17:52 2021 CS61B: Lecture #39 50

Some Thoughts

• Compressing a compressed text doesn’t result in much compression.

• it be impossible to keep compressing a text?

• that takes no input and produces an output can be thought
encodings of that output.

• the following question: Given a bitstream, what is the
the shortest program that can produce it?

• specific bitstream, there is a specific answer!

• deep concept, known as Kolmogorov Complexity.

17:17:52 2021 CS61B: Lecture #39 51

Some Thoughts

• Compressing a compressed text doesn’t result in much compression.

• it be impossible to keep compressing a text?

• you’d be able to compress any number of different messages

• that takes no input and produces an output can be thought
encodings of that output.

• the following question: Given a bitstream, what is the
the shortest program that can produce it?

• specific bitstream, there is a specific answer!

• deep concept, known as Kolmogorov Complexity.

17:17:52 2021 CS61B: Lecture #39 52

More Thoughts

• actually weird that one can compress much at all.

• 1000-character ASCII text (8000 bits), and suppose we
compress it by 50%.

• 28000 distinct messages in 8000 bits, but only 24000 possible
in 4000 bits.

• matter what one’s scheme, one can encode only 2−4000 of
possible 8000-bit messsages by 50%! Yet we do it all the time.

• Our texts have a great deal of redundancy (aka low information

• high entropy—such as random bits, previously compressed
encrypted texts—are nearly incompressible.

17:17:52 2021 CS61B: Lecture #39 53

Git

• Actually uses a different scheme from LZW for compression: a
combination of LZ77 and Huffman coding.

• kind of like delta compression, but within the same text.

• text such as

Mississippi, two Mississippi

something like

Mississippi, two <11,7>

<11,7> is intended to mean “the next 11 characters come
text that ends 7 characters before this point.”

• new symbols to the alphabet to represent these (length,
inclusions.

• done, Huffman encode the result.

17:17:52 2021 CS61B: Lecture #39 54

https://www.google.com/url?q=http://en.wikipedia.org/wiki/Kolmogorov_complexity&sa=D&ust=1588185388277000&usg=AFQjCNH81RFZvcCnRIuUekrslD5EbctbwQ
https://www.google.com/url?q=http://en.wikipedia.org/wiki/Kolmogorov_complexity&sa=D&ust=1588185388277000&usg=AFQjCNH81RFZvcCnRIuUekrslD5EbctbwQ

Lossy Compression

• applications, like compressing video and audio streams, it
necessary to be able to reproduce the exact stream.

• therefore get more compression by throwing away some
information.

• there is a limit to what human senses respond to.

• example, we don’t hear high frequencies, or see tiny color variations.

• Therefore, formats like JPEG, MP3, or MP4 use lossy compression
reconstruct output that is (hopefully) imperceptibly different

original at large savings in size and bandwidth.

• see more of this in EE120 and other courses.

17:17:52 2021 CS61B: Lecture #39 55

Wrapping Up

• compression saves space (and bandwidth) by exploiting redundancy

• and Shannon-Fano coding represent individual symbols of
with shorter codewords.

• similar codes represents multiple symbols with shorter
codewords.

• adapt their codewords to the text being compressed.

• compression both uses redundancy and exploits the fact that
consumers of compressed data (like humans) can’t really use
information that could be encoded.

17:17:52 2021 CS61B: Lecture #39 56

	Lecture #39: Compression
	Compression and Git
	Delta Compression
	Delta Compression (II)
	Two Unix Compression Programs
	Compression and Decompression
	Example: Morse Code
	Prefix Free Codes
	Prefix-Free Examples
	Shannon-Fano Coding
	Can We Do Better?
	Huffman Coding
	Comparison
	LZW Coding
	Example of LZW encoding
	LZW Step 0: Initial state
	LZW Step 1
	LZW Step 2
	LZW Step 3
	LZW Step 4
	LZW Step 5
	LZW Step 6
	LZW Step 7
	LZW Final State
	Decompression
	Reconstructing the Coding Table (I)
	LZW Decompression, Step 1
	LZW Decompression, Step 2
	LZW Decompression, Step 3
	LZW Decompression, Step 4
	LZW Decompression, Step 5
	LZW Decompression, Step 6
	LZW Decompression, Step 7
	Reconstructing the Coding Table (II)
	Tricky Decompression, Step 1
	Tricky Decompression, Step 2
	Tricky Decompression, Step 3
	Tricky Decompression, Step 4
	Tricky Decompression, Step 4 (Second Try)
	LZW Algorithm
	Some Thoughts
	More Thoughts
	Git
	Lossy Compression
	Wrapping Up

