Small Test of Understanding

keyword final in a variable declaration means that the
ue may not be changed after the variable is initialized.

ing class valid?

s Issue {
e final IntList alList = new IntList(0, null);

void modify(int k) {
his.alList.head = k;

hot?

2:29 2021 CS61B: Lecture #4 2

Destructive Incrementing

utions may modify objects in the original list to save

y add N to P’s items. */

incrList(IntList P, int n) {
X = IntList.list(3, 43, 56);

/* IntList.list from HW #1 */
Q = dincrList(X, 2);

crList(P.tail, n);

X:

Q]

y add N to L’s items. */ L: 3 43 56|

incrList(IntList L, int n)
P:

b more than count!

=L; p != null; p = p.tail)

D2:29 2021 CS61B: Lecture #4 4

Destructive Incrementing

utions may modify objects in the original list to save

y add N to P’s items. */
incrList(IntList P, int n) {

X = IntList.list(3, 43, 56);
/* IntList.list from HW #1 */
Q = dincrList(X, 2);

crList(P.tail, n);

y add N to L’s items. */
incrList(IntList L, int n)

b more than count!
=L; p != null; p = p.tail)

D2:29 2021 CS61B: Lecture #4 6

ecture #4: Simple Pointer Manipulation

ve that for every acute angle o > 0,

tana + cot v > 2

e pointer hacking.

abs and homework: We'll be lenient about accepting
rk and labs for labl, lab2, and hwO. Just get it done:
oint is getting to understand the tools involved. We will
ibmissions by email.

free to interpret the absence of a central repository
ack of a labl submission from you as indicating that you
p the course.

2:29 2021 CS61B: Lecture #4 1

Small Test of Understanding

keyword final in a variable declaration means that the
ue may not be changed after the variable is initialized.

ting class valid?

is Issue {
e final IntList alist = new IntList(0, null);

i void modify(int k) {
his.alist.head = k;

not?

is is valid. Although modify changes the head variable
t pointed to by alist, it does not modify the contents
:If (which is a pointer).

D2:29 2021 CS61B: Lecture #4 3

Destructive Incrementing

utions may modify objects in the original list to save

y add N to P’s items. */

incrList(IntList P, int n) {
X = IntList.list(3, 43, 56);

/* IntList.list from HW #1 */
Q = dincrList(X, 2);

crList(P.tail, n);

X:

Q[]

y add N to L’s items. */ L: 5 43 56|

incrList(IntList L, int n)
P:

b more than count!

=L; p !=null; p = p.tail)

D2:29 2021 CS61B: Lecture #4 5

Destructive Incrementing

utions may modify objects in the original list to save

add N to P’s items. */
incrList(IntList P, int n) {

Q = dincrList(X, 2);

incrList(IntList L, int n)

P:[
p more than count!
=L; p != null; p = p.tail)

2:29 2021 CS61B: Lecture #4 8

X = IntList.list(3, 43, 56);
/* IntList.list from HW #1 */

erList(P.tail, n); X: =
Q]
add N to L’s items. */ L: = = m- @m

Destructive Incrementing

utions may modify objects in the original list to save

y add N to P’s items. */

incrList(IntList P, int n) {
X = IntList.list(3, 43, 56);

/* IntList.list from HW #1 */
Q = dincrList(X, 2);

crList(P.tail, n);

y add N to L’s items. */ L: 5 4 58]
incrList(IntList L, int n)
P:E;

b more than count!
=L; p != null; p = p.tail)

D2:29 2021 CS61B: Lecture #4 10

Example: Non-destructive List Deletion

[2,1,2,9, 2], we want removeAll(L,2) to be the new

resulting from removing all instances of X from L
1ctively. */

; removeAll(IntList L, int x) {

1)

111;

1ead == x)

¢(L with all x’s removed (L!=null, L.head==x))*/;

¢«(L with all x’s removed (L!=null, L.head!=x))*/;

D2:29 2021 CS61B: Lecture #4 12

Destructive Incrementing

utions may modify objects in the original list to save

add N to P’s items. */
incrList(IntList P, int n) {

Q = dincrList(X, 2);

erlist(P.tail, n);

X:
Q

add N to L’s items. */ L

X = IntList.list(3, 43, 56);
/* IntList.list from HW #1 */

56)

incrList(IntList L, int n)
P:

more than count!
=L; p !=null; p = p.tail)

2:29 2021 CS61B: Lecture #4 7

Destructive Incrementing

utions may modify objects in the original list to save

y add N to P’s items. */
incrList(IntList P, int n) {

X = IntList.list(3, 43, 56);
/* IntList.list from HW #1 */
Q = dincrList(X, 2);

crlList(P.tail, n);

y add N to L’s items. */
incrList(IntList L, int n)

b more than count!
=L; p !=null; p = p.tail)

D2:29 2021 CS61B: Lecture #4 9

Example: Non-destructive List Deletion

[2,1,2,9, 2], we want removeAll(L,2) to be the new

resulting from removing all instances of X from L
ictively. */
: removeAll(IntList L, int x) {

1)
¢(null with all x’s removed)*/;
1ead == x)

«(L with all x’s removed (L'=null, L.head==x))*/;

¢(L with all x’s removed (L'!'=null, L.head!=x))*/;

D2:29 2021 CS61B: Lecture #4 11

Example: Non-destructive List Deletion

[2,1,2,9, 2], we want removeAll(L,2) to be the new

esulting from removing all instances of X from L
ctively. */
removeAll(IntList L, int x) {
1)
111;
lead == x)
moveAll(L.tail, x);

w IntList(L.head, removeAll(L.tail, x));

2:29 2021 CS61B: Lecture #4 14

ative Non-destructive List Deletion

, but use front-to-back iteration rather than recursion.

blting from removing all instances
non-destructively. */
emoveAll(IntList L, int x) {

, last; P:4 HE e,
= null;

0ll; L = L.tail) { L:

ead) result: N

t == null) last: N removeAll (P, 2)
ast = new IntList(L.head, null);

t.tail = new IntList(L.head, null);

D2:29 2021 CS61B: Lecture #4 16

ative Non-destructive List Deletion

, but use front-to-back iteration rather than recursion.

blting from removing all instances
non-destructively. */
emoveAll(IntList L, int x) {

, last; P: D Zl 2

= null;

nll; L = L.tail) { L:

ead) result:

t == null) last: removeAll (P, 2)

ast = new IntList(L.head, null);

t.tail = new IntList(L.head, null);

D2:29 2021 CS61B: Lecture #4 18

Example: Non-destructive List Deletion

[2,1,2,9, 2], we want removeAll(L,2) to be the new

esulting from removing all instances of X from L
ictively. */
removeAll(IntList L, int x) {
D)
111;
lead == x)
moveAll(L.tail, x);

(L with all x’s removed (L!=null, L.head!=x))*/;

2:29 2021 CS61B: Lecture #4 13

ative Non-destructive List Deletion

, but use front-to-back iteration rather than recursion.

blting from removing all instances
non-destructively. */
smoveAll(IntList L, int x) {

, last;

= null;

0ll; L = L.tail) {
sad)

t == null)

ast = new IntList(L.head, null);

t.tail = new IntList(L.head, null);

D2:29 2021 CS61B: Lecture #4 15

ative Non-destructive List Deletion

, but use front-to-back iteration rather than recursion.

blting from removing all instances
non-destructively. */
smoveAll(IntList L, int x) {

, last; P:[:] Zl Z
= null;

0ll; L = L.tail) { L:

sad) result: N

t == null) last: [N removeAll (P, 2)
ast = new IntList(L.head, null);

t.tail = new IntList(L.head, null);

D2:29 2021 CS61B: Lecture #4 17

ative Non-destructive List Deletion

, but use front-to-back iteration rather than recursion.
plting from removing all instances

hon-destructively. */
pmoveAll(IntList L, int x) {

last; P: D Zl 2
F null;
ph1l; L = L.tail) { L:
pad) result:
E == null) last: removeAll (P, 2)

ast = new IntList(L.head, null);

L.tail = new IntList(L.head, null);

2:29 2021 CS61B: Lecture #4 20

ative Non-destructive List Deletion

, but use front-to-back iteration rather than recursion.

blting from removing all instances

non-destructively. */

emoveAll(IntList L, int x) {

> last; P F—{2F+—{3+—2+—ON
= null;

ull; L = L.tail) { LN

ead) result:
t == null) last: removeAll (P, 2)

ast = new IntList(L.head, null);

t.tail = new IntList(L.head, null);

D2:29 2021 CS61B: Lecture #4 22

Destructive Deletion

resulting from removing all instances of X from L.
1al list may be destroyed. */
; dremoveAll(IntList L, int x) {

1)
«(null with all x’s removed)*/;
1ead == x)

«(L with all x’s removed (L !'= null))*/;

re all x’s from L’s tail. }*/;

D2:29 2021 CS61B: Lecture #4 24

ative Non-destructive List Deletion

, but use front-to-back iteration rather than recursion.
hlting from removing all instances

pon-destructively. */
pmoveAll(IntList L, int x) {

last; P: D Zl EN
F null;
pll; L = L.tail) { L:
pad) result:
E == null) last: removeAll (P, 2)

ast = new IntList(L.head, null);

b.tail = new IntList(L.head, null);

2:29 2021 CS61B: Lecture #4 19

ative Non-destructive List Deletion

, but use front-to-back iteration rather than recursion.
blting from removing all instances

non-destructively. */
smoveAll(IntList L, int x) {

, last; P:[:] Zl Z

= null;

0ll; L = L.tail) { L:

sad) result:

t == null) last: removeAll (P, 2)

ast = new IntList(L.head, null);

t.tail = new IntList(L.head, null);

D2:29 2021 CS61B: Lecture #4 21

Destructive Deletion

riginal e ¢ after Q = dremoveAll (Q,1)

— [F—BF—{F—{F—[+—{IN

resulting from removing all instances of X from L.
1al list may be destroyed. */
; dremoveAll(IntList L, int x) {

1)
«(null with all x’s removed)*/;
1ead == x)

#(L with all x’s removed (L != null))*/;

re all x’s from L’s tail. }x/;

D2:29 2021 CS61B: Lecture #4 23

Destructive Deletion

tal list may be destroyed. */
dremoveAll(IntList L, int x) {

1)
(null with all x’s removed)*/;
lead == x)

(L with all x’s removed (L '= null))*/;

re all x’s from L’s tail. }*/;

2:29 2021 CS61B: Lecture #4 26

resulting from removing all instances of X from L.

Destructive Deletion

resulting from removing all instances of X from L.

1al list may be destroyed. */
; dremoveAll(IntList L, int x) {
59

1ead == x)
removeAll(L.tail, x);

re all x’s from L’s tail. }*/;

D2:29 2021 CS61B: Lecture #4 28

Iterative Destructive Deletion

resulting from removing all X’s from L
rely. */

; dremoveAll(IntList L, int x) {

11t, last;

3t = null;

null) {

3xt = L.tail;

.head) {

== null)

;= last = L;

v

last.tail = L;
null;

D2:29 2021 CS61B: Lecture #4 30

Destructive Deletion

lal list may be destroyed. */
dremoveAll(IntList L, int x) {

1)
(null with all x’s removed)*/;
lead == x)

(L with all x’s removed (L != null))x*/;

re all x’s from L’s tail. }*/;

2:29 2021 CS61B: Lecture #4 25

resulting from removing all instances of X from L.

Destructive Deletion

resulting from removing all instances of X from L.

12l list may be destroyed. */

: dremoveAll(IntList L, int x) {

1)

111

read == x)

¢«(L with all x’s removed (L !'= null))*/;

re all x’s from L’s tail. }*/;

D2:29 2021 CS61B: Lecture #4 27

Destructive Deletion

resulting from removing all instances of X from L.
12l list may be destroyed. */

: dremoveAll(IntList L, int x) {

Bb)

1ead == x)
removeAll(L.tail, x);

dremoveAll(L.tail, x);

D2:29 2021 CS61B: Lecture #4 29

Iterative Destructive Deletion

esulting from removing all X’s from L
rely. */

dremoveAll(IntList L, int x) {

1t, last;

t = null;
null) {

xt = L.tail;
.head) {

== null)

= last = L;

last.tail = L; nexT:[]
null;

P = dremoveAll (P, 2)

2:29 2021 CS61B: Lecture #4 32

Iterative Destructive Deletion

resulting from removing all X’s from L
rely. */

; dremoveAll(IntList L, int x) {

11t, last;

3t = null;
null) {

3xt = L.tail;
.head) {

== null)
;= last = L;

v

last.tail = L; next:[4
null;

P = dremoveAll (P, 2)

D2:29 2021 CS61B: Lecture #4 34

Iterative Destructive Deletion

resulting from removing all X’s from L
rely. */

; dremoveAll(IntList L, int x) {

11t, last;

3t = null;
null) {

3xt = L.tail;
.head) {

== null)
;= last = L;

v

last.tail = L; next:[4
null;

P = dremoveAll (P, 2)

D2:29 2021 CS61B: Lecture #4 36

Iterative Destructive Deletion

esulting from removing all X’s from L
rely. */

dremoveAll(IntList L, int x) {

1lt, last;

t = null;

b P 2132 EF—BN

xt = L.tail;

L.head) { result:[]
== mull) last:
= last = L; []

L]
last.tail = L; nexf;[]
null;

P = dremoveAll (P, 2)

2:29 2021 CS61B: Lecture #4 31

Iterative Destructive Deletion

resulting from removing all X’s from L
rely. */

; dremoveAll(IntList L, int x) {

11t, last;

3t = null;

b de HESEEIN

3xt = L.tail;

..head) { result: |
5 == null) last:

ast:
;= last = L; IS'

L

= last.tail = L; pext: P = dremoveAll (P, 2)
= null;
Lt;
02:29 2021 CS61B: Lecture #4 33

Iterative Destructive Deletion

resulting from removing all X’s from L
rely. */

; dremoveAll(IntList L, int x) {

11t, last;

3t = null;

null) { p: D @j

3xt = L.tail;

..head) { result:]
5 == null) last:

ast:
;= last = L; IS'

L

* last.tail = L; pext: P = dremoveAll (P, 2)
= null;
lt;
02:29 2021 CS61B: Lecture #4 35

Iterative Destructive Deletion

esulting from removing all X’s from L

rely. */
dremoveAll(IntList L, int x) {
1t, last;
t = null;
null) .
i rEF—EE—N
xt = L.tail;
l.head) { result: []
== null) last: [3
= last = L;
L:[
last.tail = L; next:[4 P = dremoveAll (P, 2)
null;
t;
2:29 2021 CS61B: Lecture #4 38

Iterative Destructive Deletion

resulting from removing all X’s from L
rely. */

; dremoveAll(IntList L, int x) {

11t, last;

3t = null;

mlb { P F—RE—1N
3xt = L.tail;

.head) { result: []

== null) last: [3
;= last = L;

v

last.tail = L; next:[4
null;

P = dremoveAll (P, 2)

D2:29 2021 CS61B: Lecture #4 40

Iterative Destructive Deletion

resulting from removing all X’s from L
rely. */

; dremoveAll(IntList L, int x) {

11t, last;

3t = null;
null) {

3xt = L.tail;
.head) {

== null)
;= last = L;

v

last.tail = L; nexT:Eg
null;

P = dremoveAll (P, 2)

D2:29 2021 CS61B: Lecture #4 42

Iterative Destructive Deletion

esulting from removing all X’s from L

rely. */

dremoveAll(IntList L, int x) {

1lt, last;

t = null;

null) { ‘ p:

xt = L.tail;

.head) { result:
== null) last:
= last = L;

L

last.tail = L; pext:
null;

P = dremoveAll (P, 2)

2:29 2021 CS61B: Lecture #4 37

Iterative Destructive Deletion

resulting from removing all X’s from L
rely. */

; dremoveAll(IntList L, int x) {

11t, last;

3t = null;

null) { ‘ p:
3xt = L.tail;

.head) { result:
== null)

= last = L;

©

last:
L

last.tail = L; pext:
null;

P = dremoveAll (P, 2)

D2:29 2021 CS61B: Lecture #4 39

Iterative Destructive Deletion

resulting from removing all X’s from L

rely. */
; dremoveAll(IntList L, int x) {
11t, last;
3t = null;
null) { ‘ p:
3xt = L.tail;
..head) { result:
5 == null) last:
; = last = L;
L
P last.tail = L; pext:[N P = dremoveAll (P, 2)
= null;
Lt;
02:29 2021 CS61B: Lecture #4 41

Iterative Destructive Deletion

rely. */
dremoveAll(IntList L, int x) {
1t, last;
t = null;
null) {
xt = L.tail;
.head) {
== null)
= last = L;

last.tail = L; nexT:Eg
null;

2:29 2021

esulting from removing all X’s from L

P = dremoveAll (P, 2)

CS61B: Lecture #4 44

Functional Values

e may write things like this:

(L, action):

»ly the function F to all items in
juence L in order."""

in L:

ton(x)

| npn s Ilcll]

print) # Prints a b c on 3 lines.
lambda y: print(y + y)) # Prints aa bb cc

by itself denotes a function that can be passed as a
lled in doA11 as a function.

ibda x: ... denotesananonymous function that prints
wation of its argument with itself.

it allow these exactly.

D2:29 2021 CS61B: Lecture #4 46

Java Version

Java (as usual) one must specify a good deal more in-

', you need to specify the type of L and action, and the
and returned by accept. For now, we'll just give you the
ersion, and explain the details in later lectures.

ng {

id doAll(List<String> L, Consumer<String> action) {
String x : L) action.accept(x);

1 implements Consumer<String> {
id accept(String y) { System.out.println(y); }

2 implements Consumer<String> {
id accept(String y) { System.out.println(y + y); }

oAl1l:

11(L, new Printer1()); Something.doAl1(L, new Printer2());

D2:29 2021 CS61B: Lecture #4 48

Iterative Destructive Deletion

rely. */
dremoveAll(IntList L, int x) {
1lt, last;

t = null;

null) { ‘ p:

xt = L.tail;

L.head) { result:
== mull) last:
= last = L;

LN
last.tail = L; nexT:|S|
null;

2:29 2021

esulting from removing all X’s from L

P = dremoveAll (P, 2)

CS61B: Lecture #4 43

< Jump Forward: What, No Functions?

atains an illustration of an interesting technique in Java
with the functions-as-values and higher-order functions
prominently in CS61A.

re are no such things. For example, dremoveAll is not a
/alue”. Tt can only be used in the context of a function
A11(Q, 7).

the lack of functional values, Java can get the same
ing another feature it does share with Python: instance
bjects.

)ack to this in detail later. For now, let's take a brief

D2:29 2021 CS61B: Lecture #4 45

An Alternative

illows another approach:

2(L, actiom):

t in L:
iction.accept (x)
interl:

wccept (self, y):
rint (y)

Inter2:

wccept (self, y):
rint(y + y)

. Printer1())

. Printer2())

es have classes and instance methods.

D2:29 2021 CS61B: Lecture #4 47

And Finally, Lambda Expressions

ee, compared to a language such as Python, Java is just
y: we have

2 implements Consumer<String> {
id accept(String y) { System.out.println(y + y); }

h
20

riginal Python version:
print(y + y)

ficiently annoying that the Java designers decided to
convenient shorthand for the definition of classes like
h

> System.out.println(y + y)

t of language complexity involved in making it possible
tthe class definition or most of the accept method def-
now, let's just be grateful that someone went to the
prk it out.

2:29 2021 CS61B: Lecture #4 50

Consumer

sumer is not actually special; it's simply a generic library
me java.util.function.Consumer if you're curious.

method called accept, and Printer1 and Printer2 are
ot override that method. We'll review what this all

fact, have defined our own class for this purpose, but
advantage of the library?

5 type because doAll needs a single type for its action
put we have at least two different classes (Printerl
p) that we want to pass to it.

rves the same purpose as a base type in Python.

gotten all that (or not seen it yet), don't worry; we can
fails later.

2:29 2021 CS61B: Lecture #4 49

	CS61B Lecture #4: Simple Pointer Manipulation
	Small Test of Understanding
	Destructive Incrementing
	Another Example: Non-destructive List Deletion
	Iterative Non-destructive List Deletion
	Destructive Deletion
	Iterative Destructive Deletion
	A Quick Jump Forward: What, No Functions?
	Functional Values
	An Alternative
	Java Version
	Consumer
	And Finally, Lambda Expressions

