
Lecture #4: Simple Pointer Manipulation

Prove that for every acute angle α > 0,

tanα + cotα ≥ 2

Announcements

• More pointer hacking.

• in labs and homework: We’ll be lenient about accepting
homework and labs for lab1, lab2, and hw0. Just get it done:

point is getting to understand the tools involved. We will
submissions by email.

• feel free to interpret the absence of a central repository
a lack of a lab1 submission from you as indicating that you
drop the course.

12:02:29 2021 CS61B: Lecture #4 1

Small Test of Understanding

• the keyword final in a variable declaration means that the
value may not be changed after the variable is initialized.

• following class valid?

class Issue {

private final IntList aList = new IntList(0, null);

public void modify(int k) {
this.aList.head = k;

why not?

12:02:29 2021 CS61B: Lecture #4 2

Small Test of Understanding

• the keyword final in a variable declaration means that the
value may not be changed after the variable is initialized.

• following class valid?

class Issue {

private final IntList aList = new IntList(0, null);

public void modify(int k) {
this.aList.head = k;

why not?

This is valid. Although modify changes the head variable
object pointed to by aList, it does not modify the contents

itself (which is a pointer).

12:02:29 2021 CS61B: Lecture #4 3

Destructive Incrementing

solutions may modify objects in the original list to save
space:

Destructively add N to P’s items. */

dincrList(IntList P, int n) {

dincrList(P.tail, n);

Destructively add N to L’s items. */

dincrList(IntList L, int n)

do more than count!

= L; p != null; p = p.tail)

X = IntList.list(3, 43, 56);

/* IntList.list from HW #1 */

Q = dincrList(X, 2);

X:

Q:

L:

P:

3 43 56

12:02:29 2021 CS61B: Lecture #4 4

Destructive Incrementing

solutions may modify objects in the original list to save
space:

Destructively add N to P’s items. */

dincrList(IntList P, int n) {

dincrList(P.tail, n);

Destructively add N to L’s items. */

dincrList(IntList L, int n)

do more than count!

= L; p != null; p = p.tail)

X = IntList.list(3, 43, 56);

/* IntList.list from HW #1 */

Q = dincrList(X, 2);

X:

Q:

L:

P:

5 43 56

12:02:29 2021 CS61B: Lecture #4 5

Destructive Incrementing

solutions may modify objects in the original list to save
space:

Destructively add N to P’s items. */

dincrList(IntList P, int n) {

dincrList(P.tail, n);

Destructively add N to L’s items. */

dincrList(IntList L, int n)

do more than count!

= L; p != null; p = p.tail)

X = IntList.list(3, 43, 56);

/* IntList.list from HW #1 */

Q = dincrList(X, 2);

X:

Q:

L:

P:

5 43 56

12:02:29 2021 CS61B: Lecture #4 6

Destructive Incrementing

solutions may modify objects in the original list to save
space:

Destructively add N to P’s items. */

dincrList(IntList P, int n) {

dincrList(P.tail, n);

Destructively add N to L’s items. */

dincrList(IntList L, int n)

do more than count!

= L; p != null; p = p.tail)

X = IntList.list(3, 43, 56);

/* IntList.list from HW #1 */

Q = dincrList(X, 2);

X:

Q:

L:

P:

5 45 56

12:02:29 2021 CS61B: Lecture #4 7

Destructive Incrementing

solutions may modify objects in the original list to save
space:

Destructively add N to P’s items. */

dincrList(IntList P, int n) {

dincrList(P.tail, n);

Destructively add N to L’s items. */

dincrList(IntList L, int n)

do more than count!

= L; p != null; p = p.tail)

X = IntList.list(3, 43, 56);

/* IntList.list from HW #1 */

Q = dincrList(X, 2);

X:

Q:

L:

P:

5 45 56

12:02:29 2021 CS61B: Lecture #4 8

Destructive Incrementing

solutions may modify objects in the original list to save
space:

Destructively add N to P’s items. */

dincrList(IntList P, int n) {

dincrList(P.tail, n);

Destructively add N to L’s items. */

dincrList(IntList L, int n)

do more than count!

= L; p != null; p = p.tail)

X = IntList.list(3, 43, 56);

/* IntList.list from HW #1 */

Q = dincrList(X, 2);

X:

Q:

L:

P:

5 45 58

12:02:29 2021 CS61B: Lecture #4 9

Destructive Incrementing

solutions may modify objects in the original list to save
space:

Destructively add N to P’s items. */

dincrList(IntList P, int n) {

dincrList(P.tail, n);

Destructively add N to L’s items. */

dincrList(IntList L, int n)

do more than count!

= L; p != null; p = p.tail)

X = IntList.list(3, 43, 56);

/* IntList.list from HW #1 */

Q = dincrList(X, 2);

X:

Q:

L:

P:

5 45 58

12:02:29 2021 CS61B: Lecture #4 10

Another Example: Non-destructive List Deletion

list [2, 1, 2, 9, 2], we want removeAll(L,2) to be the new

resulting from removing all instances of X from L

non-destructively. */

IntList removeAll(IntList L, int x) {
null)

/*(null with all x’s removed)*/;

(L.head == x)

/*(L with all x’s removed (L!=null, L.head==x))*/;

/*(L with all x’s removed (L!=null, L.head!=x))*/;

12:02:29 2021 CS61B: Lecture #4 11

Another Example: Non-destructive List Deletion

list [2, 1, 2, 9, 2], we want removeAll(L,2) to be the new

resulting from removing all instances of X from L

non-destructively. */

IntList removeAll(IntList L, int x) {
null)

null;

(L.head == x)

/*(L with all x’s removed (L!=null, L.head==x))*/;

/*(L with all x’s removed (L!=null, L.head!=x))*/;

12:02:29 2021 CS61B: Lecture #4 12

Another Example: Non-destructive List Deletion

list [2, 1, 2, 9, 2], we want removeAll(L,2) to be the new

resulting from removing all instances of X from L

non-destructively. */

IntList removeAll(IntList L, int x) {
null)

null;

(L.head == x)

removeAll(L.tail, x);

/*(L with all x’s removed (L!=null, L.head!=x))*/;

12:02:29 2021 CS61B: Lecture #4 13

Another Example: Non-destructive List Deletion

list [2, 1, 2, 9, 2], we want removeAll(L,2) to be the new

resulting from removing all instances of X from L

non-destructively. */

IntList removeAll(IntList L, int x) {
null)

null;

(L.head == x)

removeAll(L.tail, x);

new IntList(L.head, removeAll(L.tail, x));

12:02:29 2021 CS61B: Lecture #4 14

Iterative Non-destructive List Deletion

before, but use front-to-back iteration rather than recursion.

resulting from removing all instances

non-destructively. */

removeAll(IntList L, int x) {

, last;

= null;

null; L = L.tail) {

L.head)

(last == null)

last = new IntList(L.head, null);

last.tail = new IntList(L.head, null);

12:02:29 2021 CS61B: Lecture #4 15

Iterative Non-destructive List Deletion

before, but use front-to-back iteration rather than recursion.

resulting from removing all instances

non-destructively. */

removeAll(IntList L, int x) {

, last;

= null;

null; L = L.tail) {

L.head)

(last == null)

last = new IntList(L.head, null);

last.tail = new IntList(L.head, null);

P:

L:

result:

last:

2 1 2 9

removeAll (P, 2)

12:02:29 2021 CS61B: Lecture #4 16

Iterative Non-destructive List Deletion

before, but use front-to-back iteration rather than recursion.

resulting from removing all instances

non-destructively. */

removeAll(IntList L, int x) {

, last;

= null;

null; L = L.tail) {

L.head)

(last == null)

last = new IntList(L.head, null);

last.tail = new IntList(L.head, null);

P:

L:

result:

last:

2 1 2 9

removeAll (P, 2)

12:02:29 2021 CS61B: Lecture #4 17

Iterative Non-destructive List Deletion

before, but use front-to-back iteration rather than recursion.

resulting from removing all instances

non-destructively. */

removeAll(IntList L, int x) {

, last;

= null;

null; L = L.tail) {

L.head)

(last == null)

last = new IntList(L.head, null);

last.tail = new IntList(L.head, null);

P:

L:

result:

last:

2 1 2 9

removeAll (P, 2)

1

12:02:29 2021 CS61B: Lecture #4 18

Iterative Non-destructive List Deletion

before, but use front-to-back iteration rather than recursion.

resulting from removing all instances

non-destructively. */

removeAll(IntList L, int x) {

, last;

= null;

null; L = L.tail) {

L.head)

(last == null)

last = new IntList(L.head, null);

last.tail = new IntList(L.head, null);

P:

L:

result:

last:

2 1 2 9

removeAll (P, 2)

1

12:02:29 2021 CS61B: Lecture #4 19

Iterative Non-destructive List Deletion

before, but use front-to-back iteration rather than recursion.

resulting from removing all instances

non-destructively. */

removeAll(IntList L, int x) {

, last;

= null;

null; L = L.tail) {

L.head)

(last == null)

last = new IntList(L.head, null);

last.tail = new IntList(L.head, null);

P:

L:

result:

last:

2 1 2 9

removeAll (P, 2)

1

12:02:29 2021 CS61B: Lecture #4 20

Iterative Non-destructive List Deletion

before, but use front-to-back iteration rather than recursion.

resulting from removing all instances

non-destructively. */

removeAll(IntList L, int x) {

, last;

= null;

null; L = L.tail) {

L.head)

(last == null)

last = new IntList(L.head, null);

last.tail = new IntList(L.head, null);

P:

L:

result:

last:

2 1 2 9

removeAll (P, 2)

1 9

12:02:29 2021 CS61B: Lecture #4 21

Iterative Non-destructive List Deletion

before, but use front-to-back iteration rather than recursion.

resulting from removing all instances

non-destructively. */

removeAll(IntList L, int x) {

, last;

= null;

null; L = L.tail) {

L.head)

(last == null)

last = new IntList(L.head, null);

last.tail = new IntList(L.head, null);

P:

L:

result:

last:

2 1 2 9

removeAll (P, 2)

1 9

12:02:29 2021 CS61B: Lecture #4 22

Destructive Deletion

Original : after Q = dremoveAll (Q,1)

2 3 1 1 0 1

resulting from removing all instances of X from L.

original list may be destroyed. */

IntList dremoveAll(IntList L, int x) {
null)

/*(null with all x’s removed)*/;

(L.head == x)

/*(L with all x’s removed (L != null))*/;

Remove all x’s from L’s tail. }*/;
L;

12:02:29 2021 CS61B: Lecture #4 23

Destructive Deletion

Original : after Q = dremoveAll (Q,1)

2 3 1 1 0 1

resulting from removing all instances of X from L.

original list may be destroyed. */

IntList dremoveAll(IntList L, int x) {
null)

/*(null with all x’s removed)*/;

(L.head == x)

/*(L with all x’s removed (L != null))*/;

Remove all x’s from L’s tail. }*/;
L;

12:02:29 2021 CS61B: Lecture #4 24

Destructive Deletion

Original : after Q = dremoveAll (Q,1)

2 3 1 1 0 1

resulting from removing all instances of X from L.

original list may be destroyed. */

IntList dremoveAll(IntList L, int x) {
null)

/*(null with all x’s removed)*/;

(L.head == x)

/*(L with all x’s removed (L != null))*/;

Remove all x’s from L’s tail. }*/;
L;

12:02:29 2021 CS61B: Lecture #4 25

Destructive Deletion

Original : after Q = dremoveAll (Q,1)

2 3 1 1 0 1

resulting from removing all instances of X from L.

original list may be destroyed. */

IntList dremoveAll(IntList L, int x) {
null)

/*(null with all x’s removed)*/;

(L.head == x)

/*(L with all x’s removed (L != null))*/;

Remove all x’s from L’s tail. }*/;
L;

12:02:29 2021 CS61B: Lecture #4 26

Destructive Deletion

Original : after Q = dremoveAll (Q,1)

2 3 1 1 0 1

resulting from removing all instances of X from L.

original list may be destroyed. */

IntList dremoveAll(IntList L, int x) {
null)

null;

(L.head == x)

/*(L with all x’s removed (L != null))*/;

Remove all x’s from L’s tail. }*/;
L;

12:02:29 2021 CS61B: Lecture #4 27

Destructive Deletion

Original : after Q = dremoveAll (Q,1)

2 3 1 1 0 1

resulting from removing all instances of X from L.

original list may be destroyed. */

IntList dremoveAll(IntList L, int x) {
null)

(L.head == x)

dremoveAll(L.tail, x);

Remove all x’s from L’s tail. }*/;
L;

12:02:29 2021 CS61B: Lecture #4 28

Destructive Deletion

Original : after Q = dremoveAll (Q,1)

2 3 1 1 0 1

resulting from removing all instances of X from L.

original list may be destroyed. */

IntList dremoveAll(IntList L, int x) {
null)

(L.head == x)

dremoveAll(L.tail, x);

dremoveAll(L.tail, x);

L;

12:02:29 2021 CS61B: Lecture #4 29

Iterative Destructive Deletion

resulting from removing all X’s from L

destructively. */

IntList dremoveAll(IntList L, int x) {
result, last;

last = null;

null) {
next = L.tail;

L.head) {
(last == null)

result = last = L;

= last.tail = L;

= null;

result;

+

12:02:29 2021 CS61B: Lecture #4 30

Iterative Destructive Deletion

resulting from removing all X’s from L

destructively. */

IntList dremoveAll(IntList L, int x) {
result, last;

last = null;

null) {
next = L.tail;

L.head) {
(last == null)

result = last = L;

= last.tail = L;

= null;

result;

+

P:

result:

last:

L:

next:

2 1 2 9

P = dremoveAll (P, 2)

12:02:29 2021 CS61B: Lecture #4 31

Iterative Destructive Deletion

resulting from removing all X’s from L

destructively. */

IntList dremoveAll(IntList L, int x) {
result, last;

last = null;

null) {
next = L.tail;

L.head) {
(last == null)

result = last = L;

= last.tail = L;

= null;

result;

+

P:

result:

last:

L:

next:

2 1 2 9

P = dremoveAll (P, 2)

12:02:29 2021 CS61B: Lecture #4 32

Iterative Destructive Deletion

resulting from removing all X’s from L

destructively. */

IntList dremoveAll(IntList L, int x) {
result, last;

last = null;

null) {
next = L.tail;

L.head) {
(last == null)

result = last = L;

= last.tail = L;

= null;

result;

+

P:

result:

last:

L:

next:

2 1 2 9

P = dremoveAll (P, 2)

12:02:29 2021 CS61B: Lecture #4 33

Iterative Destructive Deletion

resulting from removing all X’s from L

destructively. */

IntList dremoveAll(IntList L, int x) {
result, last;

last = null;

null) {
next = L.tail;

L.head) {
(last == null)

result = last = L;

= last.tail = L;

= null;

result;

+

P:

result:

last:

L:

next:

2 1 2 9

P = dremoveAll (P, 2)

12:02:29 2021 CS61B: Lecture #4 34

Iterative Destructive Deletion

resulting from removing all X’s from L

destructively. */

IntList dremoveAll(IntList L, int x) {
result, last;

last = null;

null) {
next = L.tail;

L.head) {
(last == null)

result = last = L;

= last.tail = L;

= null;

result;

+

P:

result:

last:

L:

next:

2 1 2 9

P = dremoveAll (P, 2)

12:02:29 2021 CS61B: Lecture #4 35

Iterative Destructive Deletion

resulting from removing all X’s from L

destructively. */

IntList dremoveAll(IntList L, int x) {
result, last;

last = null;

null) {
next = L.tail;

L.head) {
(last == null)

result = last = L;

= last.tail = L;

= null;

result;

+

P:

result:

last:

L:

next:

2 1 2 9

P = dremoveAll (P, 2)

12:02:29 2021 CS61B: Lecture #4 36

Iterative Destructive Deletion

resulting from removing all X’s from L

destructively. */

IntList dremoveAll(IntList L, int x) {
result, last;

last = null;

null) {
next = L.tail;

L.head) {
(last == null)

result = last = L;

= last.tail = L;

= null;

result;

+

P:

result:

last:

L:

next:

2 1 2 9

P = dremoveAll (P, 2)

12:02:29 2021 CS61B: Lecture #4 37

Iterative Destructive Deletion

resulting from removing all X’s from L

destructively. */

IntList dremoveAll(IntList L, int x) {
result, last;

last = null;

null) {
next = L.tail;

L.head) {
(last == null)

result = last = L;

= last.tail = L;

= null;

result;

+

P:

result:

last:

L:

next:

2 1 2 9

P = dremoveAll (P, 2)

12:02:29 2021 CS61B: Lecture #4 38

Iterative Destructive Deletion

resulting from removing all X’s from L

destructively. */

IntList dremoveAll(IntList L, int x) {
result, last;

last = null;

null) {
next = L.tail;

L.head) {
(last == null)

result = last = L;

= last.tail = L;

= null;

result;

+

P:

result:

last:

L:

next:

2 1 2 9

P = dremoveAll (P, 2)

12:02:29 2021 CS61B: Lecture #4 39

Iterative Destructive Deletion

resulting from removing all X’s from L

destructively. */

IntList dremoveAll(IntList L, int x) {
result, last;

last = null;

null) {
next = L.tail;

L.head) {
(last == null)

result = last = L;

= last.tail = L;

= null;

result;

+

P:

result:

last:

L:

next:

2 1 2 9

P = dremoveAll (P, 2)

12:02:29 2021 CS61B: Lecture #4 40

Iterative Destructive Deletion

resulting from removing all X’s from L

destructively. */

IntList dremoveAll(IntList L, int x) {
result, last;

last = null;

null) {
next = L.tail;

L.head) {
(last == null)

result = last = L;

= last.tail = L;

= null;

result;

+

P:

result:

last:

L:

next:

2 1 2 9

P = dremoveAll (P, 2)

12:02:29 2021 CS61B: Lecture #4 41

Iterative Destructive Deletion

resulting from removing all X’s from L

destructively. */

IntList dremoveAll(IntList L, int x) {
result, last;

last = null;

null) {
next = L.tail;

L.head) {
(last == null)

result = last = L;

= last.tail = L;

= null;

result;

+

P:

result:

last:

L:

next:

2 1 2 9

P = dremoveAll (P, 2)

12:02:29 2021 CS61B: Lecture #4 42

Iterative Destructive Deletion

resulting from removing all X’s from L

destructively. */

IntList dremoveAll(IntList L, int x) {
result, last;

last = null;

null) {
next = L.tail;

L.head) {
(last == null)

result = last = L;

= last.tail = L;

= null;

result;

+

P:

result:

last:

L:

next:

2 1 2 9

P = dremoveAll (P, 2)

12:02:29 2021 CS61B: Lecture #4 43

Iterative Destructive Deletion

resulting from removing all X’s from L

destructively. */

IntList dremoveAll(IntList L, int x) {
result, last;

last = null;

null) {
next = L.tail;

L.head) {
(last == null)

result = last = L;

= last.tail = L;

= null;

result;

+

P:

result:

last:

L:

next:

2 1 2 9

P = dremoveAll (P, 2)

12:02:29 2021 CS61B: Lecture #4 44

Quick Jump Forward: What, No Functions?

• contains an illustration of an interesting technique in Java
do with the functions-as-values and higher-order functions

figured prominently in CS61A.

• there are no such things. For example, dremoveAll is not a
“first-class value”. It can only be used in the context of a function

dremoveAll(Q, 7).

• despite the lack of functional values, Java can get the same
using another feature it does share with Python: instance

of objects.

• back to this in detail later. For now, let’s take a brief
ahead.

12:02:29 2021 CS61B: Lecture #4 45

Functional Values

• we may write things like this:

doall(L, action):

"""Apply the function F to all items in

sequence L in order."""

in L:

acton(x)

["a", "b", "c"]

print) # Prints a b c on 3 lines.

lambda y: print(y + y)) # Prints aa bb cc

• all by itself denotes a function that can be passed as a
called in doAll as a function.

• lambda x: ... denotes an anonymous function that prints
concatenation of its argument with itself.

• not allow these exactly.

12:02:29 2021 CS61B: Lecture #4 46

An Alternative

• also allows another approach:

doAll2(L, action):

x in L:

action.accept(x)

Printer1:

accept(self, y):

print(y)

Printer2:

accept(self, y):

print(y + y)

doAll2(L, Printer1())

doAll2(L, Printer2())

• does have classes and instance methods.

12:02:29 2021 CS61B: Lecture #4 47

Java Version

• In Java (as usual) one must specify a good deal more in-

• particular, you need to specify the type of L and action, and the
taken and returned by accept. For now, we’ll just give you the

“cookbook” version, and explain the details in later lectures.

Something {

void doAll(List<String> L, Consumer<String> action) {

(String x : L) action.accept(x);

Printer1 implements Consumer<String> {

void accept(String y) { System.out.println(y); }

Printer2 implements Consumer<String> {

void accept(String y) { System.out.println(y + y); }

• call doAll:

Something.doAll(L, new Printer1()); Something.doAll(L, new Printer2());

12:02:29 2021 CS61B: Lecture #4 48

Consumer

• Consumer is not actually special; it’s simply a generic library
name java.util.function.Consumer if you’re curious.

• a method called accept, and Printer1 and Printer2 are
that override that method. We’ll review what this all

later.

• in fact, have defined our own class for this purpose, but
take advantage of the library?

• this type because doAll needs a single type for its action
parameter, but we have at least two different classes (Printer1

Printer2) that we want to pass to it.

• serves the same purpose as a base type in Python.

• forgotten all that (or not seen it yet), don’t worry; we can
details later.

12:02:29 2021 CS61B: Lecture #4 49

And Finally, Lambda Expressions

• see, compared to a language such as Python, Java is just
wordy: we have

Printer2 implements Consumer<String> {

void accept(String y) { System.out.println(y + y); }

with

Printer2()

original Python version:

y: print(y + y)

• sufficiently annoying that the Java designers decided to
a convenient shorthand for the definition of classes like
with

-> System.out.println(y + y)

• lot of language complexity involved in making it possible
write the class definition or most of the accept method def-
For now, let’s just be grateful that someone went to the

work it out.
12:02:29 2021 CS61B: Lecture #4 50

	CS61B Lecture #4: Simple Pointer Manipulation
	Small Test of Understanding
	Destructive Incrementing
	Another Example: Non-destructive List Deletion
	Iterative Non-destructive List Deletion
	Destructive Deletion
	Iterative Destructive Deletion
	A Quick Jump Forward: What, No Functions?
	Functional Values
	An Alternative
	Java Version
	Consumer
	And Finally, Lambda Expressions

