
CS61B Lecture #12

Today: Various odds and ends in support of abstraction.

Readings: At this point, we have looked at Chapters 1–8 of Head First
Java . Today’s lecture is about Chapters 9 and 11. For Friday, please
read Chapter 10 and Chapter 3 (“Numbers”) from Assorted Material on
Java.

Last modified: Mon Feb 13 12:04:12 2006 CS61B: Lecture #12 1

Parent constructors

• In lecture notes #5, talked about how Java allows implementer of a
class to control all manipulation of objects of that class.

• In particular, this means that Java gives the constructor of a class
the first shot at each new object.

• When one class extends another, there are two constructors—one
for the parent type and one for the new (child) type.

• In this case, Java guarantees that one of the parent’s constructors
is called first. In effect, there is a call to a parent constructor at
the beginning of every one of the child’s constructors.

• You can call the parent’s constructor yourself. By default, Java calls
the “default” (parameterless) constructor.

class Figure { class Rectangle extends Figure {

public Figure (int sides) { public Rectangle () {

... super (4);

}... }...

} }

Last modified: Mon Feb 13 12:04:12 2006 CS61B: Lecture #12 2

What to do About Errors?

• Large amount of any production program devoted to detecting and
responding to errors.

• Some errors are external (bad input, network failures); others are
internal errors in programs.

• When method has stated precondition, it’s the client’s job to comply.

• Still, it’s nice to detect and report client’s errors.

• In Java, we throw exception objects, typically:

throw new SomeException (optional description);

• Exceptions are objects. By convention, they are given two construc-
tors: one with no arguments, and one with a descriptive string argu-
ment (which the exception stores).

• Java system throws some exceptions implicitly, as when you deref-
erence a null pointer, or exceed an array bound.

Last modified: Mon Feb 13 12:04:12 2006 CS61B: Lecture #12 3

Catching Exceptions

• A throw causes each active method call to terminate abruptly, until
(and unless) we come to a try block.

• Catch exceptions and do something corrective with try:

try {

Stuff that might throw exception;
} catch (SomeException e) {

Do something reasonable;
} catch (SomeOtherException e) {

Do something else reasonable;
}

Go on with life;

• When SomeException exception occurs in “Stuff. . . ,” we immedi-
ately “do something reasonable” and then “go on with life.”

• Descriptive string (if any) available as e.getMessage() for error
messages and the like.

Last modified: Mon Feb 13 12:04:12 2006 CS61B: Lecture #12 4



Exceptions: Checked vs. Unchecked

• The object thrown by throw command must be a subtype of Throwable
(in java.lang).

• Java pre-declares several such subtypes, among them

– Error, used for serious, unrecoverable errors;

– Exception, intended for all other exceptions;

– RuntimeException, a subtype of Exception intended mostly for
programming errors too common to be worth declaring.

• Pre-declared exceptions are all subtypes of one of these.

• Any subtype of Error or RuntimeException is said to be unchecked.

• All other exception types are checked.

Last modified: Mon Feb 13 12:04:12 2006 CS61B: Lecture #12 5

Unchecked Exceptions

• Intended for

– Programmer errors: many library functions throw
IllegalArgumentException when one fails to meet a precondi-
tion.

– Errors detected by the basic Java system: e.g.,

∗ Executing x.y when x is null,

∗ Executing A[i] when i is out of bounds,

∗ Executing (String) x when x turns out not to point to a String.

– Certain catastrophic failures, such as running out of memory.

• May be thrown anywhere at any time with no special preparation.

Last modified: Mon Feb 13 12:04:12 2006 CS61B: Lecture #12 6

Checked Exceptions

• Intended to indicate exceptional circumstances that are not neces-
sarily programmer errors. Examples:

– Attempting to open a file that does not exist.

– Input or output errors on a file.

– Receiving an interrupt.

• Every checked exception that can occur inside a method must ei-
ther be handled by a try statement, or reported in the method’s
declaration.

• For example,

void myRead () throws IOException, InterruptedException { ... }

means that myRead (or something it calls) might throw IOException

or InterruptedException.

• Language Design: Why did Java make the following illegal?

class Parent { class Child extends Parent {

void f () { ... } void f () throws IOException { ... }

} }

Last modified: Mon Feb 13 12:04:12 2006 CS61B: Lecture #12 7

Good Practice

• Throw exceptions rather than using print statements and System.exit
everywhere,

• . . . because response to an problem may depend on the caller, not
just method where problem arises.

• Nice to throw an exception when programmer violates preconditions.

• Particularly good idea to throw an exception rather than let bad
input corrupt a data structure.

• Good idea to document when methods throw exceptions.

• To convey information about the cause of exceptional condition, put
it into the exception rather than into some global variable:

class MyBad extends Exception { try { ...

public IntList errs; } catch (MyBad e) {

MyBad (IntList nums) { errs=nums; } ... e.errs ...

} }

Last modified: Mon Feb 13 12:04:12 2006 CS61B: Lecture #12 8


	CS61B Lecture #12
	Parent constructors
	What to do About Errors?
	Catching Exceptions
	Exceptions: Checked vs. Unchecked
	Unchecked Exceptions
	Checked Exceptions
	Good Practice

