
CS61B Lecture #36

Today:

• Dynamic Programming

• A Brief Side Trip: Enumeration types.

Last modified: Sun Nov 24 13:56:51 2019 CS61B: Lecture #36 1

Dynamic Programming

• A puzzle (D. Garcia):

– Start with a list with an even number of non-negative integers.

– Each player in turn takes either the leftmost number or the
rightmost.

– Idea is to get the largest possible sum.

• Example: starting with (6, 12, 0, 8), you (as first player) should take
the 8. Whatever the second player takes, you also get the 12, for a
total of 20.

• Assuming your opponent plays perfectly (i.e., to get as much as pos-
sible), how can you maximize your sum?

• Can solve this with exhaustive game-tree search.

Last modified: Sun Nov 24 13:56:51 2019 CS61B: Lecture #36 2

Obvious Program

• Recursion makes it easy, again:

int bestSum(int[] V) {

int total, i, N = V.length;

for (i = 0, total = 0; i < N; i += 1) total += V[i];

return bestSum(V, 0, N-1, total);

}

/** The largest sum obtainable by the first player in the choosing

* game on the list V[LEFT .. RIGHT], assuming that TOTAL is the

* sum of all the elements in V[LEFT .. RIGHT]. */

int bestSum(int[] V, int left, int right, int total) {

if (left > right)

return 0;

else {

int L = total - bestSum(V, left+1, right, total-V[left]);

int R = total - bestSum(V, left, right-1, total-V[right]);

return Math.max(L, R);

}

}

• Time cost is C(0) = 1, C(N) = 2C(N − 1); so C(N) ∈ Θ(2N)

Last modified: Sun Nov 24 13:56:51 2019 CS61B: Lecture #36 3

Still Another Idea from CS61A

• The problem is that we are recomputing intermediate results many
times.

• Solution: memoize the intermediate results. Here, we pass in an
N ×N array (N = V.length) of memoized results, initialized to -1.

int bestSum(int[] V, int left, int right, int total, int[][] memo) {

if (left > right)

return 0;

else if (memo[left][right] == -1) {

int L = total - bestSum(V, left+1, right, total-V[left], memo);

int R = total - bestSum(V, left, right-1, total-V[right], memo);

memo[left][right] = Math.max(L, R);

}

return memo[left][right];

}

}

• Now the number of recursive calls to bestSum must be O(N 2), for
N = the length of V , an enormous improvement from Θ(2N)!

Last modified: Sun Nov 24 13:56:51 2019 CS61B: Lecture #36 4

Iterative Version

• I prefer the recursive version, but the usual presentation of this
idea—known as dynamic programming—is iterative:

int bestSum(int[] V) {

int[][] memo = new int[V.length][V.length];

int[][] total = new int[V.length][V.length];

for (int i = 0; i < V.length; i += 1)

memo[i][i] = total[i][i] = V[i];

for (int k = 1; k < V.length; k += 1)

for (int i = 0; i < V.length-k-1; i += 1) {

total[i][i+k] = V[i] + total[i+1][i+k];

int L = total[i][i+k] - memo[i+1][i+k];

int R = total[i][i+k] - memo[i][i+k-1];

memo[i][i+k] = Math.max(L, R);

}

return memo[0][V.length-1];

}

• That is, we figure out ahead of time the order in which the memo-
ized version will fill in memo, and write an explicit loop.

• Save the time needed to check whether result exists.

• But I say, why bother unless it’s necessary to save space?
Last modified: Sun Nov 24 13:56:51 2019 CS61B: Lecture #36 5

Longest Common Subsequence

• Problem: Find length of the longest string that is a subsequence of
each of two other strings.

• Example: Longest common subsequence of
“sally sells sea shells by the seashore” and
“sarah sold salt sellers at the salt mines”

is
“sa sl sa sells the sae” (length 23)

• Similarity testing, for example.

• Obvious recursive algorithm:

/** Length of longest common subsequence of S0[0..k0-1]

* and S1[0..k1-1] (pseudo Java) */

static int lls(String S0, int k0, String S1, int k1) {

if (k0 == 0 || k1 == 0) return 0;

if (S0[k0-1] == S1[k1-1]) return 1 + lls(S0, k0-1, S1, k1-1);

else return Math.max(lls(S0, k0-1, S1, k1), lls(S0, k0, S1, k1-1);

}

• Exponential, but obviously memoizable.

Last modified: Sun Nov 24 13:56:51 2019 CS61B: Lecture #36 6

Memoized Longest Common Subsequence

/** Length of longest common subsequence of S0[0..k0-1]

* and S1[0..k1-1] (pseudo Java) */

static int lls(String S0, int k0, String S1, int k1) {

int[][] memo = new int[k0+1][k1+1];

for (int[] row : memo) Arrays.fill(row, -1);

return lls(S0, k0, S1, k1, memo);

}

private static int lls(String S0, int k0, String S1, int k1, int[][] memo) {

if (k0 == 0 || k1 == 0) return 0;

if (memo[k0][k1] == -1) {

if (S0[k0-1] == S1[k1-1])

memo[k0][k1] = 1 + lls(S0, k0-1, S1, k1-1, memo);

else

memo[k0][k1] = Math.max(lls(S0, k0-1, S1, k1, memo),

lls(S0, k0, S1, k1-1, memo));

}

return memo[k0][k1];

}

Q: How fast will the memoized version be?

Last modified: Sun Nov 24 13:56:51 2019 CS61B: Lecture #36 7

Memoized Longest Common Subsequence

/** Length of longest common subsequence of S0[0..k0-1]

* and S1[0..k1-1] (pseudo Java) */

static int lls(String S0, int k0, String S1, int k1) {

int[][] memo = new int[k0+1][k1+1];

for (int[] row : memo) Arrays.fill(row, -1);

return lls(S0, k0, S1, k1, memo);

}

private static int lls(String S0, int k0, String S1, int k1, int[][] memo) {

if (k0 == 0 || k1 == 0) return 0;

if (memo[k0][k1] == -1) {

if (S0[k0-1] == S1[k1-1])

memo[k0][k1] = 1 + lls(S0, k0-1, S1, k1-1, memo);

else

memo[k0][k1] = Math.max(lls(S0, k0-1, S1, k1, memo),

lls(S0, k0, S1, k1-1, memo));

}

return memo[k0][k1];

}

Q: How fast will the memoized version be? Θ(k0 · k1)

Last modified: Sun Nov 24 13:56:51 2019 CS61B: Lecture #36 8

Side Trip into Java: Enumeration Types

• Problem: Need a type to represent something that has a few, named,
discrete values.

• In the purest form, the only necessary operations are == and !=;
the only property of a value of the type is that it differs from all
others.

• In older versions of Java, used named integer constants:

interface Pieces {

int BLACK PIECE = 0, // Fields in interfaces are static final.

BLACK KING = 1,

WHITE PIECE = 2,

WHITE KING = 3,

EMPTY = 4;

}

• C and C++ provide enumeration types as a shorthand, with syntax like
this:

enum Piece { BLACK PIECE, BLACK KING, WHITE PIECE, WHITE KING, EMPTY };

• But since all these values are basically ints, accidents can happen.

Last modified: Sun Nov 24 13:56:51 2019 CS61B: Lecture #36 9

Enum Types in Java

• New version of Java allows syntax like that of C or C++, but with
more guarantees:

public enum Piece {

BLACK PIECE, BLACK KING, WHITE PIECE, WHITE KING, EMPTY

}

• Defines Piece as a new reference type, a special kind of class type.

• The names BLACK PIECE, etc., are static, final enumeration constants
(or enumerals) of type PIECE.

• They are automatically initialized, and are the only values of the
enumeration type that exist (illegal to use new to create an enum
value.)

• Can safely use ==, and also switch statements:

boolean isKing(Piece p) {

switch (p) {

case BLACK KING: case WHITE KING: return true;

default: return false;

}

}

Last modified: Sun Nov 24 13:56:51 2019 CS61B: Lecture #36 10

Making Enumerals Available Elsewhere

• Enumerals like BLACK PIECE are static members of a class, not classes.

• Therefore, unlike C or C++, their declarations are not automatically
visible outside the enumeration class definition.

• So, in other classes, must write Piece.BLACK_PIECE, which can get
annoying.

• However, with version 1.5, Java has static imports: to import all
static definitions of class checkers.Piece (including enumerals), you
write

import static checkers.Piece.*;

among the import clauses.

• Alas, cannot use this for enum classes in the anonymous package.

Last modified: Sun Nov 24 13:56:51 2019 CS61B: Lecture #36 11

Operations on Enum Types

• Order of declaration of enumeration constants significant: .ordinal()
gives the position (numbering from 0) of an enumeration value. Thus,
Piece.BLACK KING.ordinal() is 1.

• The array Piece.values() gives all the possible values of the type.
Thus, you can write:

for (Piece p : Piece.values())

System.out.printf("Piece value #%d is %s%n", p.ordinal(), p);

• The static function Piece.valueOf converts a String into a value of
type Piece. So Piece.valueOf("EMPTY") == EMPTY.

Last modified: Sun Nov 24 13:56:51 2019 CS61B: Lecture #36 12

Fancy Enum Types

• Enums are classes. You can define all the extra fields, methods, and
constructors you want.

• Constructors are used only in creating enumeration constants. The
constructor arguments follow the constant name:

enum Piece {

BLACK PIECE(BLACK, false, "b"), BLACK KING(BLACK, true, "B"),

WHITE PIECE(WHITE, false, "w"), WHITE KING(WHITE, true, "W"),

EMPTY(null, false, " ");

private final Side color;

private final boolean isKing;

private final String textName;

Piece(Side color, boolean isKing, String textName) {

this.color = color; this.isKing = isKing; this.textName = textName;

}

Side color() { return color; }

boolean isKing() { return isKing; }

String textName() { return textName; }

}
Last modified: Sun Nov 24 13:56:51 2019 CS61B: Lecture #36 13

	CS61B Lecture #36
	Dynamic Programming
	Obvious Program
	Still Another Idea from CS61A
	Iterative Version
	Longest Common Subsequence
	Memoized Longest Common Subsequence
	Side Trip into Java: Enumeration Types
	Enum Types in Java
	Making Enumerals Available Elsewhere
	Operations on Enum Types
	Fancy Enum Types

