Co 61B Test 2 Review
Spring 2022 Discussion 11: Aprﬂ 4, 2022

| Coins, Trees, and Dogs?

Tod is obsessed with dog-associated cryptocurrencies. After purchasing an un-
healthy volume of volatile assets, Tod decides to use the binary tree below to orga-

nize his collection.

Corgi Inu
/ \
Dogecoin Dogelon Mars
/ \ \
DogeToken Kishu Inu Coin Shiba Inu
\

Yuki Inu Token

(a) Tod wishes to organize his collection alphabetically. Write out the DFS pre-
order, DFS in-order, DFS post-order, and BFS (Level Order) traversals of
the following binary tree. Which traversal gives the collection in sorted in

alphabetical order?

(b) Tod mistakenly believes that an inorder traversal will yield the collection in
alphabetical order. What data structure might Tod have been thinking of? To
fix this, draw a tree such that when traversed inorder, it will yield the coins in

sorted order.

(¢) FExtra: Provide an example of a tree where the DFS pre-order, DFS in-order,
and BFS traversals are the same, and where the DFS post-order traversal is

the opposite order of the previous three traversals.

2 Test 2 Review

2 Mechanical Heap Practice

Consider the following min-heap:

2
/ N\
5 12
/\
6 7

(a) Draw the heap after inserting the following numbers (in the given order and

in succession): 4, 13, 3

(b) Now, returning back to the initially given min-heap, draw the heap after re-
moving the minimum element twice. Assume that when bubbling down, the
parent will bubble down towards the minimum of the two children if both
children have lower values.

(¢c) Extra: What is the runtime of finding a specific element within the heap,
assuming we have access to the underlying data structure (e.g. if the heap is

represented as an array, we can scan the array)?

Test 2 Review 3

J Asymptotics Review
Give the tightest bounds (either /0 or ©) for the following functions.

(a) Note that nextInt(int bound) returns a random integer between @ (inclusive)

and bound (exclusive) and takes constant time.

1 void f(int N) {

2 Random rand = new Random();

3 for (int i = 1; i < N; i += rand.nextInt(i) + 1) {
4 for (int j = 0; j < 1i; j++) {

5 System.out.println(i + j);
6 }

7 3

8}

(b)

1 void g(int N) {

2 if (N < 10000) {

3 return;

4 i

5 for (int i = 0; i <N; i++) {

6 it++;

7 }

8 g(N / 2);

9 g(N / 2);

4 Test 2 Review

4 A Bit of Practice

(a) Fill in the missing lines for set, a method that takes in an integer n and sets
the k-th bit to to value of y, which is either 0 or 1. Hint: @ | @ = 0 and
0| 1=1.

1 int set(int n, int k, int y) {

(b) Fill in the method flipEveryOther that takes in an integer n and flips every
other bit, starting by flipping the least significant (rightmost) bit.

1 int flipEveryOther(int n) {

2 int m =

Test 2 Review 5

5 Hash Codes and Runtime

Suppose we're given the following Student class definition.

1 class Student {

2 public final static String isStudent = "yes";

3

4 public String name;

5 public String major;

6 public String school;

7 public int year;

8 public int id;

9

10 public Student(String name, String major, String school, int year, int id) {
11

12 }

13

14 @0verride

15 public int hashCode() {

16

17 }

18

19 @0verride

20 public boolean equals(Object o) {

21 if (o == null || this.getClass() != o.getClass()) {
22 return false;

23 ¥

24 Student other = (Student) o;

25 return school.equals(other.school) && id == other.id;
26 }

27}

(a) Assume that major, school, and id are never modified after initializing a
Student, but year can be modified. For each of the following hash codes,

answer whether they are ”valid” or ”invalid” and justify why.

1. return isStudent.hashCode();

2. return id

3. return year + id;

4. return school.hashCode() + id;

6

(b)

Test 2 Review

5. return 17 * school.hashCode() + 5 * major.hashCode() + id;

1. What is the best case and worst case runtime of the following function, in

terms of N and K7 Suppose N is equal to roster.size() and the name,
major, and school fields for all Students are O(K) length. Assume that
computing hash codes take constant time.

Set<Student> removeDuplicates(ArrayList<Student> roster) {
Set<Student> noDuplicates = new HashSet<>();
for (Student s : roster) {
if (noDuplicates.contains(s)) {

System.out.println("Duplicate found: " + s.name);
}
noDuplicates.add(s);
}
return noDuplicates;
}
Best Case: O() Worst Case: ©()

. Which of the valid hash codes from above would be most likely to cause

these runtimes?

	Coins, Trees, and Dogs?
	Mechanical Heap Practice
	Asymptotics Review
	A Bit of Practice
	Hash Codes and Runtime

