
CS 61B Binary Trees
Spring 2022 Discussion 9: March 14, 2022

1 Law and Order
Write the DFS pre-order, DFS in-order, DFS post-order, and BFS traversals of the

following binary search tree. For all traversals, process child nodes left to right.

10

/ \

3 12

/ \ \

1 7 13

\

15

DFS Pre-order: 10, 3, 1, 7, 12, 13, 15

DFS In-order: 1, 3, 7, 10, 12, 13, 15

DFS Post-order: 1, 7, 3, 15, 13, 12, 10

BFS: 10, 3, 12, 1, 7, 13, 15

2 Binary Trees

2 Is This a BST?
(a) The following code should check if a given binary tree is a BST. However, for

some trees, it returns the wrong answer. Give an example of a binary tree for

which brokenIsBST fails.

1 public static boolean brokenIsBST(TreeNode T) {

2 if (T == null) {

3 return true;

4 } else if (T.left != null && T.left.val > T.val) {

5 return false;

6 } else if (T.right != null && T.right.val < T.val) {

7 return false;

8 } else {

9 return brokenIsBST(T.left) && brokenIsBST(T.right);

10 }

11 }

Here is an example of a binary tree for which brokenIsBST fails:

10

/ \

5 15

/ \

3 12

The method fails for some binary trees that are not BSTs because it only

checks that the value at a node is greater than its left child and less than its

right child, not that its value is greater than every node in the left subtree and

less than every node in the right subtree. Above is an example of a tree for

which it fails.

It is important to note that the method does indeed return true for every

binary tree that actually is a BST (it correctly identifies proper BSTs).

Binary Trees 3

(b) Now, write isBST that fixes the error encountered in part (a).

Hint : You will find Integer.MIN_VALUE and Integer.MAX_VALUE helpful.

public static boolean isBST(TreeNode T) {

return isBSTHelper(__);

}

public static boolean isBSTHelper(__) {

}

1 public static boolean isBST(TreeNode T) {

2 return isBSTHelper(T, Integer.MIN_VALUE, Integer.MAX_VALUE);

3 }

4

5 public static boolean isBSTHelper(TreeNode T, int min, int max) {

6 if (T == null) {

7 return true;

8 } else if (T.val < min || T.val > max) {

9 return false;

10 } else {

11 return isBSTHelper(T.left, min, T.val)

12 && isBSTHelper(T.right, T.val, max);

13 }

14 }

4 Binary Trees

3 Shall we play a game?
In the partial game tree below, we represent maximizing nodes as 4; minimizing

nodes as O; and nodes with static values as 2. Determine the values for the nodes

that would result from the minimax algorithm without pruning (write them inside

the nodes), and then cross out branches that would not be traversed (would be

pruned) as a result of alpha-beta pruning. Assume we evaluate children of a node

from left to right.

3 7 10 11 4 2 5 8 6

Binary Trees 5

7

7

7

3 7

11

10 11 4

5

5

2 5

8

8 6

6 Binary Trees

4 Sum Paths Extra

(a) Define a root-to-leaf path as a sequence of nodes from the root of a tree to

one of its leaves. Write a method printSumPaths(TreeNode T, int k) that

prints out all root-to-leaf paths whose values sum to k. For example, if T is

the binary tree in the diagram below and k is 13, then the program will print

out 10 2 1 on one line and 10 4 -1 on another.

10

/ \

2 4

/ \ \

5 1 -1

public static void printSumPaths(TreeNode T, int k) {

if (T != null) {

sumPaths();

}

}

public static void sumPaths(TreeNode T, int k, String path) {

}

Binary Trees 7

1 public static void printSumPaths(TreeNode T, int k) {

2 if (T != null) {

3 sumPaths(T, k, "");

4 }

5 }

6

7 public static void sumPaths(TreeNode T, int k, String path) {

8 if (T.left == null && T.right == null && k == T.val) {

9 System.out.println(path + T.val);

10 } else {

11 path += T.val + " ";

12 if (T.left != null) {

13 sumPaths(T.left, k - T.val, path);

14 }

15 if (T.right != null) {

16 sumPaths(T.right, k - T.val, path);

17 }

18 }

19 }

(b) What is the worst case runtime of printSumPaths in terms of N , the number

of nodes in the tree? What is the worst case runtime in terms of h, the height

of the tree?

In the worst case, the height of the tree is N and we perform a string con-

tatenation at each level. If we assume that all nodes in the tree have values

bounded by some constant, then at level l we perform a string concatenation

of a string of length l (the length of the path from the root to that node) and a

string whose length is bounded by some constant. Since string concatenation

is linear, we get a runtime of 1 + 2 + . . . + N = Θ(N2).

The worst case runtime in terms of h is when we have a complete binary tree.

In this case, there are 2h leaves, all at the bottom level of the tree. Each string

concatenation on this level takes Θ(h) time (again assuming that the values

in the tree are bounded by some constant). Thus the total runtime is Θ(h2h),

since there are at most 2h non-leaf nodes and the string concatenation for these

nodes takes Ø(h) time.

	Law and Order
	Is This a BST?
	Shall we play a game?
	Sum Paths Extra

