CS61B Lecture #16: Complexity
What Are the Questions?

- **Cost** is a principal concern throughout engineering:

 “An engineer is someone who can do for a dime what any fool can do for a dollar.”

- Cost can mean

 - *Operational cost* (for programs, time to run, space requirements).
 - *Development costs*: How much engineering time? When delivered?
 - *Maintenance costs*: Upgrades, bug fixes.
 - *Costs of failure*: How robust? How safe?

- Is this program **fast enough**? Depends on:

 - *For what purpose*;
 - *For what input data*.

- How much **space** (memory, disk space)?

 - Again depends on what input data.

- How will it **scale**, as input gets big?
Enlightening Example

Problem: Scan a text corpus (say 10^9 bytes or so), and find and print the 20 most frequently used words, together with counts of how often they occur.

- Solution 1 (Knuth): Heavy-Duty data structures
 - Hash Trie implementation, randomized placement, pointers galore, several pages long.

- Solution 2 (Doug McIlroy): UNIX shell script:
  ```
  tr -c -s '[:alpha:]' '[:\n*]' < FILE | sort | uniq -c | sort -n -r -k 1,1 | sed 20q
  ```

- Which is better?
 - #1 is much faster,
 - but #2 took 5 minutes to write and processes 1GB in ≈ 256 sec.
 - I pick #2.

- In very many cases, almost anything will do: Keep It Simple.
Cost Measures (Time)

- **Wall-clock or execution time**
 - You can do this at home:

    ```
    time java FindPrimes 1000
    ```
 - Advantages: easy to measure, meaning is obvious.
 - Appropriate where time is critical (real-time systems, e.g.).
 - Disadvantages: applies only to specific data set, compiler, machine, etc.

- **Dynamic statement counts** of # of times statements are executed:
 - Advantages: more general (not sensitive to speed of machine).
 - Disadvantages: doesn’t tell you actual time, still applies only to specific data sets.

- **Symbolic execution times**:
 - That is, *formulas* for execution times as functions of input size.
 - Advantages: applies to all inputs, makes scaling clear.
 - Disadvantage: practical formula must be approximate, may tell very little about actual time.
Asymptotic Cost

• Symbolic execution time lets us see \textit{shape} of the cost function.

• Since we are approximating anyway, pointless to be precise about certain things:

 - \textit{Behavior on small inputs}:

 * Can always pre-calculate some results.
 * Times for small inputs not usually important.
 * Often more interested in \textit{asymptotic behavior} as input size becomes very large.

 - \textit{Constant factors} (as in “off by factor of 2”):

 * Just changing machines causes constant-factor change.

• How to abstract away from (i.e., ignore) these things?
Handy Tool: Order Notation

• Idea: Don’t try to produce specific functions that specify size, but rather families of functions with similarly behaved magnitudes.

• Then say something like “f is bounded by g if it is in g’s family.”

• For any function \(g(x) \), the functions \(2g(x) \), \(0.5g(x) \), or for any \(K > 0 \), \(K \cdot g(x) \), all have the same “shape”. So put all of them into g’s family.

• Any function \(h(x) \) such that \(h(x) = K \cdot g(x) \) for \(x > M \) (for some constant \(M \)) has g’s shape “except for small values.” So put all of these in g’s family.

• For upper limits, throw in all functions whose absolute value is everywhere \(\leq \text{some member of } g’s family \). Call this set \(O(g) \) or \(O(g(n)) \).

• Or, for lower limits, throw in all functions whose absolute value is everywhere \(\geq \text{some member of } g’s family \). Call this set \(\Omega(g) \).

• Finally, define \(\Theta(g) = O(g) \cap \Omega(g) \)—the set of functions bracketed in magnitude by two members of g’s family.
Big Oh

• Goal: Specify bounding from above.

\[M = 1 \]

• Here, \(f(x) \leq 2g(x) \) as long as \(x > 1 \),

• So \(f(x) \) is in \(g \)’s “bounded-above family,” written

\[f(x) \in O(g(x)), \]

• \textbf{...even though} (in this case) \(f(x) > g(x) \) everywhere.
Big Omega

• **Goal:** Specify bounding from below:

\[
M = 1
\]

Here, \(f'(x) \geq \frac{1}{2} g(x) \) as long as \(x > 1 \),

So \(f'(x) \) is in \(g \)'s “bounded-below family,” written

\[
f'(x) \in \Omega(g(x)),
\]

... even though \(f(x) < g(x) \) everywhere.
Big Theta

• In the two previous slides, we not only have \(f(x) \in O(g(x)) \) and \(f'(x) \in \Omega(g(x)) \), ...

• ... but also \(f(x) \in \Omega(g(x)) \) and \(f'(x) \in O(g(x)) \).

• We can summarize this all by saying \(f(x) \in \Theta(g(x)) \) and \(f'(x) \in \Theta(g(x)) \).
Aside: Various Mathematical Pedantry

- Technically, if I am going to talk about $O(\cdot), \Omega(\cdot)$ and $\Theta(\cdot)$ as sets of functions, I really should write, for example,

 \[f \in O(g) \quad \text{instead of} \quad f(x) \in O(g(x)) \]

- In effect, $f(x) \in O(g(x))$ is short for $\lambda x. f(x) \in O(\lambda x. g(x))$.

- The standard notation outside this course, in fact, is $f(x) = O(g(x))$, but personally, I think that’s a serious abuse of notation.
How We Use Order Notation

- Elsewhere in mathematics, you’ll see $O(\ldots)$, etc., used generally to specify bounds on functions.

- For example,

$$\pi(N) = \Theta\left(\frac{N}{\ln N}\right)$$

which I would prefer to write

$$\pi(N) \in \Theta\left(\frac{N}{\ln N}\right)$$

(Here, $\pi(N)$ is the number of primes less than or equal to N.)

- Also, you’ll see things like

$$f(x) = x^3 + x^2 + O(x) \quad \text{(or} \quad f(x) \in x^3 + x^2 + O(x)),$$

meaning that $f(x) = x^3 + x^2 + g(x)$ where $g(x) \in O(x)$.

- For our purposes, the functions we will be bounding will be cost functions: functions that measure the amount of execution time or the amount of space required by a program or algorithm.
Why It Matters

- Computer scientists often talk as if constant factors didn’t matter at all, only the difference of $\Theta(N)$ vs. $\Theta(N^2)$.

- In reality they do matter, but at some point, constants always get swamped.

<table>
<thead>
<tr>
<th>n</th>
<th>$16 \lg n$</th>
<th>\sqrt{n}</th>
<th>n</th>
<th>$n \lg n$</th>
<th>n^2</th>
<th>n^3</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>16</td>
<td>1.4</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>48</td>
<td>2.8</td>
<td>8</td>
<td>24</td>
<td>64</td>
<td>512</td>
<td>256</td>
</tr>
<tr>
<td>16</td>
<td>64</td>
<td>4</td>
<td>16</td>
<td>64</td>
<td>256</td>
<td>4,096</td>
<td>65,636</td>
</tr>
<tr>
<td>32</td>
<td>80</td>
<td>5.7</td>
<td>32</td>
<td>160</td>
<td>1024</td>
<td>32,768</td>
<td>4.2 \times 10^9</td>
</tr>
<tr>
<td>64</td>
<td>96</td>
<td>8</td>
<td>64</td>
<td>384</td>
<td>4,096</td>
<td>262,144</td>
<td>1.8 \times 10^{19}</td>
</tr>
<tr>
<td>128</td>
<td>112</td>
<td>11</td>
<td>128</td>
<td>896</td>
<td>16,384</td>
<td>2.1 \times 10^9</td>
<td>3.4 \times 10^{38}</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>1,024</td>
<td>160</td>
<td>32</td>
<td>1,024</td>
<td>10,240</td>
<td>1.0 \times 10^6</td>
<td>1.1 \times 10^9</td>
<td>1.8 \times 10^{308}</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>2^{20}</td>
<td>320</td>
<td>1024</td>
<td>1.0 \times 10^6</td>
<td>2.1 \times 10^7</td>
<td>1.1 \times 10^{12}</td>
<td>1.2 \times 10^{18}</td>
<td>6.7 \times 10^{315,652}</td>
</tr>
</tbody>
</table>

- For example: replace column n^2 with $10^6 \cdot n^2$ and it still becomes dominated by 2^n.
Some Intuition on Meaning of Growth

- How big a problem can you solve in a given time?
- In the following table, left column shows time in microseconds to solve a given problem as a function of problem size N.
- Entries show the *size of problem* that can be solved in a second, hour, month (31 days), and century, for various relationships between time required and problem size.
- $N =$ problem size.

<table>
<thead>
<tr>
<th>Time (μsec) for problem size N</th>
<th>1 second</th>
<th>Max N Possible in 1 second</th>
<th>1 hour</th>
<th>1 month</th>
<th>1 century</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lg N$</td>
<td>10^{300000}</td>
<td>$10^{100000000000}$</td>
<td>$10^8 \cdot 10^{11}$</td>
<td>$10^{10} \cdot 10^{14}$</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>10^6</td>
<td>$3.6 \cdot 10^9$</td>
<td>$2.7 \cdot 10^{12}$</td>
<td>$3.2 \cdot 10^{15}$</td>
<td></td>
</tr>
<tr>
<td>$N \lg N$</td>
<td>63000</td>
<td>$1.3 \cdot 10^8$</td>
<td>$7.4 \cdot 10^{10}$</td>
<td>$6.9 \cdot 10^{13}$</td>
<td></td>
</tr>
<tr>
<td>N^2</td>
<td>1000</td>
<td>60000</td>
<td>$1.6 \cdot 10^6$</td>
<td>$5.6 \cdot 10^7$</td>
<td></td>
</tr>
<tr>
<td>N^3</td>
<td>100</td>
<td>1500</td>
<td>14000</td>
<td>150000</td>
<td></td>
</tr>
<tr>
<td>2^N</td>
<td>20</td>
<td>32</td>
<td>41</td>
<td>51</td>
<td></td>
</tr>
</tbody>
</table>
Using the Notation

- Can use this order notation for any kind of real-valued function.
- We will use them to describe cost functions. Example:

```java
/** Find position of X in list L, or -1 if not found. */
int find(List L, Object X) {
    int c;
    for (c = 0; L != null; L = L.next, c += 1)
        if (X.equals(L.head)) return c;
    return -1;
}
```

- Choose representative operation: number of `.equals` tests.
- If N is length of L, then loop does at most N tests: worst-case time is N tests.
- In fact, total # of instructions executed is roughly proportional to N in the worst case, so can also say worst-case time is $O(N)$, regardless of units used to measure.
- Use $N > M$ provision (in defn. of $O(\cdot)$) to ignore empty list.
Be Careful

- It's also true that the worst-case time is $O(N^2)$, since $N \in O(N^2)$ also: Big-Oh bounds are loose.

- The worst-case time is $\Omega(N)$, since $N \in \Omega(N)$, but that does not mean that the loop always takes time N, or even $K \cdot N$ for some K.

- Instead, we are just saying something about the function that maps N into the largest possible time required to process any array of length N.

- To say as much as possible about our worst-case time, we should try to give a Θ bound: in this case, we can: $\Theta(N)$.

- But again, that still tells us nothing about best-case time, which happens when we find x at the beginning of the loop. Best-case time is $\Theta(1)$.
Effect of Nested Loops

- Nested loops often lead to polynomial bounds:

  ```java
  for (int i = 0; i < A.length; i += 1)
      for (int j = 0; j < A.length; j += 1)
          if (i != j && A[i] == A[j])
              return true;
  return false;
  ```

- Clearly, time is $O(N^2)$, where $N = A.length$. **Worst-case time is $\Theta(N^2)$**.
Constant Factor Speed-Up

• Previous loop is inefficient. This one is considerably faster:

```java
for (int i = 0; i < A.length; i += 1)
    for (int j = i+1; j < A.length; j += 1)
        if (A[i] == A[j]) return true;
return false;
```

• Now worst-case time is proportional to

\[N - 1 + N - 2 + \ldots + 1 = N(N - 1)/2, \]

which is a constant-factor improvement.

• But still,

\[N(N - 1)/2 \in \Theta(N^2). \]

so the asymptotic time is unchanged by the constant-factor speed-up.
Recursion and Recurrences: Fast Growth

• Silly example of recursion. In the worst case, both recursive calls happen:

```java
/** True iff X is a substring of S */
boolean occurs(String S, String X) {
    if (S.equals(X)) return true;
    if (S.length() <= X.length()) return false;
    return
    occurs(S.substring(1), X) ||
    occurs(S.substring(0, S.length()-1), X);
}
```

• Define $C(N)$ to be the worst-case cost of $\text{occurs}(S,X)$ for S of length N, X of fixed size N_0, measured in # of calls to occurs. Then

$$C(N) = \begin{cases} 1, & \text{if } N \leq N_0, \\
2C(N-1) + 1 & \text{if } N > N_0
\end{cases}$$

• So $C(N)$ grows exponentially:

$$C(N) = 2C(N-1) + 1 = 2(2C(N-2) + 1) + 1 = \ldots = 2(\ldots 2 \cdot 1 + 1) + \ldots + 1 = 2^{N-N_0} + 2^{N-N_0-1} + 2^{N-N_0-2} + \ldots + 1 = 2^{N-N_0+1} - 1 \in \Theta(2^N)$$
Binary Search: Slow Growth

/** True X iff is an element of S[L .. U]. Assumes *
 * S in ascending order, 0 <= L <= U-1 < S.length. */
boolean isIn(String X, String[] S, int L, int U) {
 if (L > U) return false;
 int M = (L+U)/2;
 int direct = X.compareTo(S[M]);
 if (direct < 0) return isIn(X, S, L, M-1);
 else if (direct > 0) return isIn(X, S, M+1, U);
 else return true;
}

• Here, worst-case time, $C(D)$, (as measured by # of calls to .compareTo),
 depends on size $D = U - L + 1$.

• We eliminate $S[M]$ from consideration each time and look at half the
 rest. Assume $D = 2^k - 1$ for simplicity, so:

\[
C(D) = \begin{cases}
0, & \text{if } D \leq 0, \\
1 + C((D - 1)/2), & \text{if } D > 0.
\end{cases}
\]

\[
= 1 + 1 + \ldots + 1 + 0
\]

\[
= k = \lg(D + 1) \in \Theta(\lg D)
\]
Another Typical Pattern: Merge Sort

List sort(List L) {
 if (L.length() < 2) return L;
 Split L into L0 and L1 of about equal size;
 L0 = sort(L0); L1 = sort(L1);
 return Merge of L0 and L1
}

Merge ("combine into a single ordered list") takes time proportional to size of its result.

• Assuming that size of L is $N = 2^k$, worst-case cost function, $C(N)$, counting just merge time (which is proportional to # items merged):

$$
C(N) = \begin{cases}
0, & \text{if } N < 2; \\
2C(N/2) + N, & \text{if } N \geq 2.
\end{cases}
$$

$$
= 2(2C(N/4) + N/2) + N \\
= 4C(N/4) + N + N \\
= 8C(N/8) + N + N + N \\
= N \cdot 0 + \underbrace{N + N + \ldots + N}_{k=\lg N} \\
= N \lg N
$$

• In general, can say it’s $\Theta(N \lg N)$ for arbitrary N (not just 2^k).