Topics

- Overview of standard Java Collections classes.
 - Iterators, ListIterators
 - Containers and maps in the abstract
- Amortized analysis of implementing lists with arrays.
Data Types in the Abstract

- Most of the time, should not worry about implementation of data structures, search, etc.
- What they do for us—their specification—is important.
- Java has several standard types (in java.util) to represent collections of objects
 - Six interfaces:
 * Collection: General collections of items.
 * List: Indexed sequences with duplication
 * Set, SortedSet: Collections without duplication
 * Map, SortedMap: Dictionaries (key \(\mapsto \) value)
 - Concrete classes that provide actual instances: LinkedList, ArrayList, HashSet, TreeSet.
 - To make change easier, purists would use the concrete types only for new, interfaces for parameter types, local variables.
The Collection Interface

- Collection interface. Main functions promised:
 - **Membership tests**: contains (\in), containsAll (\subseteq)
 - **Other queries**: size, isEmpty
 - **Retrieval**: iterator, toArray
 - **Optional modifiers**: add, addAll, clear, remove, removeAll (set difference), retainAll (intersect)
Side Trip about Library Design: Optional Operations

• Not all Collections need to be modifiable; often makes sense just to get things from them.

• So some operations are optional (add, addAll, clear, remove, removeAll, retainAll)

• The library developers decided to have all Collections implement these, but allowed implementations to throw an exception:
  ```java
  UnsupportedOperationException
  ```

• An alternative design would have created separate interfaces:
  ```java
  interface Collection { contains, containsAll, size, iterator, ... }
  interface Expandable extends Collection { add, addAll }
  interface Shrinkable extends Collection { remove, removeAll, ... }
  interface ModifiableCollection
      extends Collection, Expandable, Shrinkable {} 
  ```

• You’d soon have lots of interfaces. Perhaps that’s why they didn’t do it that way.
The List Interface

• Extends Collection

• Intended to represent *indexed sequences* (generalized arrays)

• Adds new methods to those of Collection:

 - **Membership tests:** `indexOf, lastIndexOf`.

 - **Retrieval:** `get(i), listIterator(), sublist(B, E)`.

 - **Modifiers:** `add` and `addAll` with additional index to say *where* to add. Likewise for removal operations. `set` operation to go with `get`.

• **Type** `ListIterator<Item> extends Iterator<Item>`:

 - **Adds** `previous` and `hasPrevious`.

 - `add, remove, and set` allow one to iterate through a list, inserting, removing, or changing as you go.

 - **Important Question:** What advantage is there to saying `List L` rather than `LinkedList L` or `ArrayList L`?
Implementing Lists (I): ArrayLists

- The main concrete types in Java library for interface List are ArrayList and LinkedList:

- As you might expect, an ArrayList, A, uses an array to hold data. For example, a list containing the three items 1, 4, and 9 might be represented like this:

```
A: 
| data: 1 4 9 |
| count: 3 |
```

- After adding four more items to A, its data array will be full, and the value of data will have to be replaced with a pointer to a new, bigger array that starts with a copy of its previous values.

- Question: For best performance, how big should this new array be?

- If we increase the size by 1 each time it gets full (or by any constant value), the cost of N additions will scale as $\Theta(N^2)$, which makes ArrayList look much worse than LinkedList (which uses an IntList-like implementation.)
Expanding Vectors Efficiently

- When using array for expanding sequence, best to *double* the size of array to grow it. Here’s why.

- If array is size s, doubling its size and moving s elements to the new array takes time proportional to $2s$.

- In all cases, there is an additional $\Theta(1)$ cost for each addition to account for actually assigning the new value into the array.

- When you add up these costs for inserting a sequence of N items, the *total* cost turns out to be proportional to N, as if each addition took constant time, even though some of the additions actually take time proportional to N all by themselves!
Amortized Time

• Suppose that the actual costs of a sequence of \(N \) operations are \(c_0, c_1, \ldots, c_{N-1} \), which may differ from each other by arbitrary amounts and where \(c_i \in O(f(i)) \).

• Consider another sequence \(a_0, a_1, \ldots, a_{N-1} \), where \(a_i \in O(g(i)) \).

• If

\[
\sum_{0 \leq i < k} a_i \geq \sum_{0 \leq i < k} c_i \text{ for all } k,
\]

we say that the operations all run in \(O(g(i)) \) amortized time.

• That is, the actual cost of a given operation, \(c_i \), may be arbitrarily larger than the amortized time, \(a_i \), as long as the total amortized time is always greater than or equal to the total actual time, no matter where the sequence of operations stops—i.e., no matter what \(k \) is.

• In cases of interest, the amortized time bounds are much less than the actual individual time bounds: \(g(i) \ll f(i) \).

• E.g., for the case of insertion with array doubling, \(f(i) \in O(N) \) and \(g(i) \in O(1) \).
Amortization: Expanding Vectors (II)

<table>
<thead>
<tr>
<th>To Insert Item #</th>
<th>Resizing Cost</th>
<th>Cumulative Cost</th>
<th>Resizing Cost per Item</th>
<th>Array Size After Insertions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>6</td>
<td>1.5</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>14</td>
<td>2.8</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>14</td>
<td>2.33</td>
<td>8</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>14</td>
<td>1.75</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>30</td>
<td>3.33</td>
<td>16</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>30</td>
<td>1.88</td>
<td>16</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$2^m + 1$ to $2^{m+1} - 1$</td>
<td>2^{m+2}</td>
<td>$2^{m+3} - 2$</td>
<td>≈ 4</td>
<td>2^{m+2}</td>
</tr>
</tbody>
</table>

- If we spread out (amortize) the cost of resizing, we average at most about 4 time units for resizing on each item: “amortized resizing time is 4 units.” Time to add N elements is $\Theta(N)$, not $\Theta(N^2)$.
Demonstrating Amortized Time: Potential Method

• To formalize the argument, associate a potential, $\Phi_i \geq 0$, to the i^{th} operation that keeps track of “saved up” time from cheap operations that we can “spend” on later expensive ones. Start with $\Phi_0 = 0$.

• Now we pretend that the cost of the i^{th} operation is actually a_i, the amortized cost, defined

$$a_i = c_i + \Phi_{i+1} - \Phi_i,$$

where c_i is the real cost of the operation. Or, looking at potential:

$$\Phi_{i+1} = \Phi_i + (a_i - c_i)$$

• On cheap operations, we artificially set $a_i > c_i$ so that we can increase Φ ($\Phi_{i+1} > \Phi_i$).

• On expensive ones, we typically have $a_i \ll c_i$ and greatly decrease Φ (but don’t let it go negative—may not be “overdrawn”).

• We try to do all this so that a_i remains as we desired (e.g., $O(1)$ for expanding array), without allowing $\Phi_i < 0$.

• Requires that we choose a_i so that Φ_i always stays ahead of c_i.

Last modified: Mon Oct 4 14:21:20 2021
Application to Expanding Arrays

- When adding to our array, the cost, \(c_i \), of adding element \(\#i \) when the array already has space for it is 1 unit.

- The array does not initially have space when adding items 1, 2, 4, 8, 16,\ldots—in other words at item \(2^n \) for all \(n \geq 0 \). So,
 - \(c_i = 1 \) if \(i \geq 0 \) and is not a power of 2; and
 - \(c_i = 2i + 1 \) when \(i \) is a power of 2 (copy \(i \) items, clear another \(i \) items, and then add item \(\#i \)).

- So on each operation \(\#2^n \) we're going to need to have saved up at least \(2 \cdot 2^n = 2^{n+1} \) units of potential to cover the expense of expanding the array, and we have this operation and the preceding \(2^n - 1 \) operations in which to save up this much potential (everything since the preceding doubling operation).

- So choose \(a_0 = 1 \) and \(a_i = 5 \) for \(i > 0 \). Apply \(\Phi_{i+1} = \Phi_i + (a_i - c_i) \), and here is what happens:

\(i \)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
\(c_i \)	1	3	5	1	9	1	1	17	1	1	1	1	1	1	33	1		
\(a_i \)	1	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	
\(\Phi_i \)	0	0	2	2	6	2	6	10	14	2	6	10	14	18	22	26	30	2

Pretending each cost is 5 never underestimates true cumulative time.