CS61B Lecture #22: Hashing
Speeding Up Searching

• Linear search is OK for small data sets, bad for large.

• So linear search would be OK if we could rapidly narrow the search to a few items.

• Suppose that in constant time we could put any item in our data set into a numbered bucket, where # buckets stays within a constant factor of # keys.

• Suppose also that buckets contain roughly equal numbers of keys.

• Then search would be constant time in number of comparisons.
Hash functions

- To do this, must have way to convert key to bucket number: a hash function.

 "hash /hæʃ/ 2a a mixture; a jumble. b a mess." Concise Oxford Dictionary, eighth edition

- Example:
 - \(N = 200 \) data items.
 - keys are longs, evenly spread over the range \(0..2^{63} - 1 \).
 - Want to keep maximum search to \(L = 2 \) items.
 - Use hash function \(h(K) = K \mod M \), where \(M = N/L = 100 \) is the number of buckets: \(0 \leq h(K) < M \).
 - So 100232, 433, and 10002332482 go into different buckets, but 10, 400210, and 210 all go into the same bucket.
External chaining

- Array of M buckets.
- Each bucket is a list of data items.

Not all buckets have same length, but average is $N/M = L$, the load factor.

To work well, hash function must avoid too many collisions: keys that “hash” to equal values.
Ditching the Chains: Open Addressing

- Idea: Put one data item in each bucket.
- When there is a collision, and bucket is full, just use another.
- So you actually use a hash function with two arguments: \(h(K, i) \), where \(K \) is the key, and the buckets you try are \(h(K, 0) \), \(h(K, 1) \), \ldots.

- Various possibilities (here \(S \) is the table size):
 - Linear probes: \(h(K, i) = (h(K, 0) + C \cdot i) \mod S \), for constant \(C \).
 - Quadratic probes: \(h(K, i) = (h(K, 0) + C_1 \cdot i + C_2 \cdot i^2) \mod S \).
 - Double hashing: \(h(K, i) = (h(K, 0) + i \cdot h'(K)) \mod S \), where \(h' \) is a different hash function.

- Example: \(h(K, i) = (K + i) \% M \), with \(M = 10 \):
 - Add 1, 2, 11, 3, 102, 9, 18, 108, 309 to empty table.

| 108 | 1 | 2 | 11 | 3 | 102 | 309 | 18 | 9 |

- Things can get slow, even when table is far from full.
- Lots of literature on this technique, but
- Personally, I just settle for external chaining.
Filling the Table

- To get (likely to be) constant-time lookup, need to keep \#buckets within constant factor of \#items.
- So resize table when load factor gets higher than some limit.
- In general, must \textit{re-hash} all table items.
- Still, this operation constant time per item,
- So by doubling table size each time, get constant \textit{amortized} time for insertion and lookup
- (Assuming, that is, that our hash function is good).
Sets vs. Dictionaries

- So far, we’ve really been talking about hash tables containing *sets of keys*. The important operations are testing for membership, adding keys, and iterating through the keys.

- The term “hash table” can also refer to a *dictionary*, in which each key is associated with a *value*.

- The associated value does not affect in the search process.

- The important operations are testing for whether a key is in the table, finding what value is associated with a given key, and setting the value associated with a key.

- Here, we’ll concentrate on sets of keys, since the addition of associated values is a conceptually small change.
Hash Functions: Strings

• For String, "s_0s_1\ldots s_{n-1}" want function that takes all characters and their positions into account.

• What’s wrong with s_0 + s_1 + \ldots + s_{n-1}?

• For strings, Java uses

\[h(s) = s_0 \cdot 31^{n-1} + s_1 \cdot 31^{n-2} + \ldots + s_{n-1} \]

computed modulo 2^{32} as in Java int arithmetic.

• To convert to a table index in 0..N - 1, compute h(s) mod N (but don’t use table size that is multiple of 31!)

• Not as hard to compute as you might think; don’t even need multiplication!

```java
int r; r = 0;
for (int i = 0; i < s.length (); i += 1)
    r = (r << 5) - r + s.charAt (i);
```
Hash Functions: Other Data Structures I

- **Lists** (ArrayList, LinkedList, etc.) are analogous to strings: e.g., Java uses

  ```java
  int hashCode = 1; Iterator i = list.iterator();
  while (i.hasNext()) {
      Object obj = i.next();
      hashCode =
      31*hashCode
      + (obj==null ? 0 : obj.hashCode());
  }
  ```

- **Can limit time spent computing hash function by not looking at entire list.** For example: look only at first few items (if dealing with a *List* or *SortedSet*).

- **Causes more collisions, but does *not* cause equal things to go to different buckets.**
Hash Functions: Other Data Structures II

- Recursively defined data structures \Rightarrow recursively defined hash functions.

- For example, on a binary tree, one can use something like

  ```python
  def hash(T):
      if T == null:
          return 0;
      else return someHashFunction (T.label ()) ^ hash(T.left ()) ^ hash(T.right ());
  ```
Identity Hash Functions

• We can use the address of object as its hashed value ("hash on identity") if distinct (\(!=\)) objects are never considered equal.

• But careful! Won’t work for Strings, because \(\text{.equals}\) Strings could be in different buckets:

```java
String H = "Hello",
S1 = H + ", world!",
S2 = "Hello, world!";
String H = "Hello",
S1 = H + ", world!",
S2 = "Hello, world!";
```

• Here \(S1\text{.equals}(S2)\), but \(S1 \neq S2\).

• Java provides the type \text{java.util.IdentityHashMap} for this purpose:

```java
IdentityHashMap<Object, String> map = new IdentityHashMap<>();
Thing x = ...;
map.put(x, "Thing #1"); // Works if Thing does not override \text{.equals}.
map.put("Frank", "President"); // Probably not a good idea.
```
What Java Provides

- The class `Object` defines function `hashCode()`.
- By default, returns the identity hash function, or something similar. [Why is this OK as a default?]
- Can override it for your particular type.
- For reasons given on last slide, it is overridden for type `String`, as well as many types in the Java library, like all kinds of `List`.
- The types `Hashtable`, `HashSet`, and `HashMap` use `hashCode` to give you fast look-up of objects.

```java
HashMap<KeyType,ValueType> map =
    new HashMap<>(approximate size, load factor);
map.put(key, value);  // Map KEY -> VALUE.
... map.get(someKey)  // VALUE last mapped to by SOMEKEY.
... map.containsKey(someKey)  // Is SOMEKEY mapped?
... map.keySet()  // All keys in MAP (a Set)
```
Special Case: Monotonic Hash Functions

- Suppose our hash function is *monotonic*: either nonincreasing or nondescreasing.

- So, e.g., if key $k_1 > k_2$, then $h(k_1) \geq h(k_2)$.

- Example:
 - Items are time-stamped records; key is the time.
 - Hashing function is to have one bucket for every hour.

- In this case, you *can* use a hash table to speed up range queries [How?]

- Could this be applied to strings? When would it work well?
Perfect Hashing

• Suppose set of keys is \textit{fixed}.

• A tailor-made hash function might then hash every key to a different value: \textit{perfect hashing}.

• In that case, there is no search along a chain or in an open-address table: either the element at the hash value is or is not equal to the target key.

• One technique: use a hash table of hash tables with two hash functions. One chooses a small hash table that uses the second hash function. With a few random selections of hash functions, you can soon find one where there is never a collision in the second hash table.

• For example, suppose we store key/value pairs in type \texttt{Pair}. Then:

```java
Pair[][] table = ...;
// Find which table X must be in:
int h0 = hash0(X);
// Use different hash function for each h0.
Pair[] pair = table[h0][hash2(h0, X)];
return pair.key.equals(X) ? pair.value : null;
```
Characteristics

• Assuming good hash function, add, lookup, deletion take $\Theta(1)$ time, amortized.

• Good for cases where one looks up equal keys.

• For range queries such as “Give me every name between Martin and Napoli,” hash tables are usually bad. [Why?]

• Hashing is probably not a good idea for small sets that you rapidly create and discard. [Why?]