CS61B Lectures #28

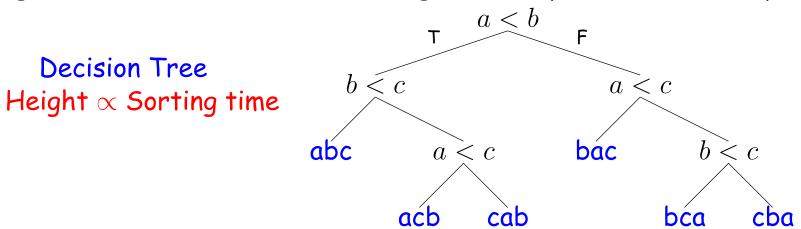
Today:

- Lower bounds on sorting by comparison
- Distribution counting, radix sorts

Readings: Today: *DS(IJ)*, *Chapter 8*; Next topic: *Chapter 9*.

Better than N lg N?

- We can prove that *if all you can do to keys is compare them,* then sorting must take $\Omega(N \lg N)$.
- \bullet Basic idea: there are N! possible ways the input data could be scrambled.
- \bullet Therefore, your program must be prepared to do N! different combinations of data-moving operations.
- Therefore, there must be N! possible combinations of outcomes of all the **if**-tests in your program, since those determine what data gets moved where (we're assuming that comparisons are 2-way).



Necessary Choices

- Since each if-test goes two ways, the number of possible different outcomes for k if-tests is 2^k .
- Thus, there must be enough tests so that $2^k \ge N!$, which means $k \ge \lg N!$.
- Using Stirling's approximation,

$$N! \in \sqrt{2\pi N} \left(\frac{N}{e}\right)^N \left(1 + \Theta\left(\frac{1}{N}\right)\right),$$

$$\lg(N!) \in \frac{1}{2}(\lg 2\pi + \lg N) + N \lg N - N \lg e + \lg\left(1 + \Theta\left(\frac{1}{N}\right)\right)$$

$$= \Theta(N \lg N)$$

• This tells us that k, the worst-case number of tests needed to sort N items by comparison sorting, is in $\Omega(N \lg N)$: there must be cases where we need (some multiple of) $N \lg N$ comparisons to sort N things.

Beyond Comparison: Distribution

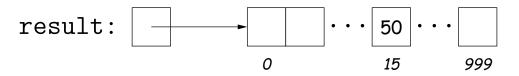
- But suppose we can do more than compare keys?
- For example, how can we sort a set of N different integer keys whose values range from 0 to kN, for some small constant k?
- One technique is *distribution sorting*:
 - Put the integers into N buckets; integer p goes to bucket $\lfloor p/k \rfloor$.
 - There are at most k keys per bucket, so concatenate and use insertion sort, which will now be fast.
- **E.g.**, k = 2, N = 10:

Start: 14 3 10 13 4 2 19 17 0 9 In buckets: | 0 | 3 2 | 4 | | 9 | 10 | 13 | 14 | 17 | 19 |

• Now insertion sort is fast. Putting the data in buckets takes time $\Theta(N)$, and insertion sort takes $\Theta(kN)$. When k is fixed (constant), we have sorting in time $\Theta(N)$.

Distribution Counting

- Another technique: *count* the number of items < 1, < 2, etc.
- If $M_p = \#$ items with value < p, then in sorted order, the $j^{\dagger h}$ item with value p must be item $\#M_p + j$.
- Suppose that one has a set of numbers in the range [0, 1000) (possibly with duplicates) and that exactly 15 of them are less than 50, which is also in the set. Then the result of sorting will look like this:

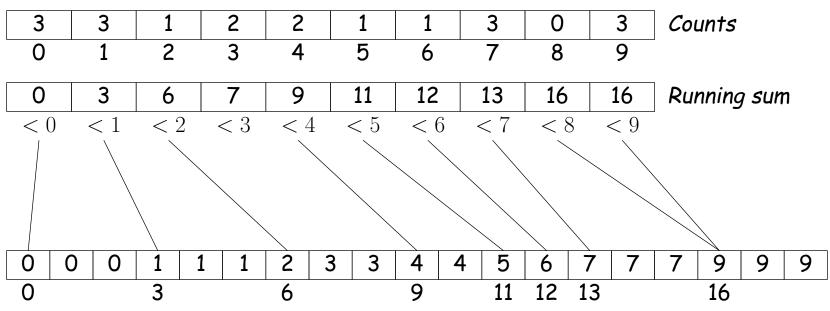


- In other words, the count of numbers < k gives the index of k in the output array.
- If there are N items in the range 0..M-1, this gives another *linear*-time $-\Theta(M+N)$)—algorithm (We include M and N here to allow for both duplicates and for cases where $M \gg N$.)
- [Postscript on notation: the notations [A, B], (A, B), [A, B), and (A, B] above refer to *intervals*. The use of parentheses vs. square brackets reflects the distinction between *open* and *closed* intervals. Thus $x \in [A, B]$ iff $A \le x \le B$, while $x \in [A, B)$ iff $A \le x < B$, etc.]

Last modified: Wed Mar 30 00:37:59 2022

CS61B: Lecture #28 5

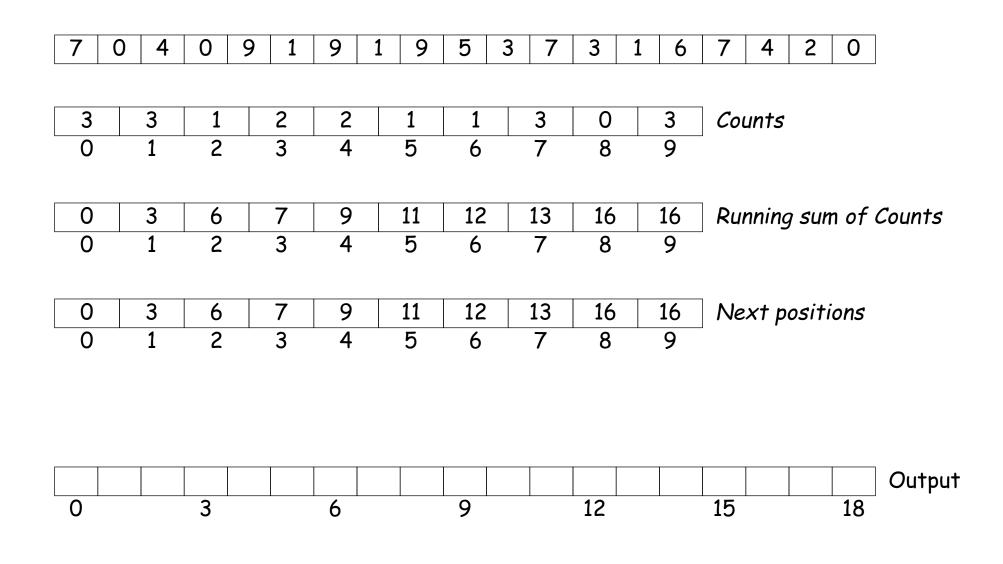
• Suppose all items are between 0 and 9 as in this example:

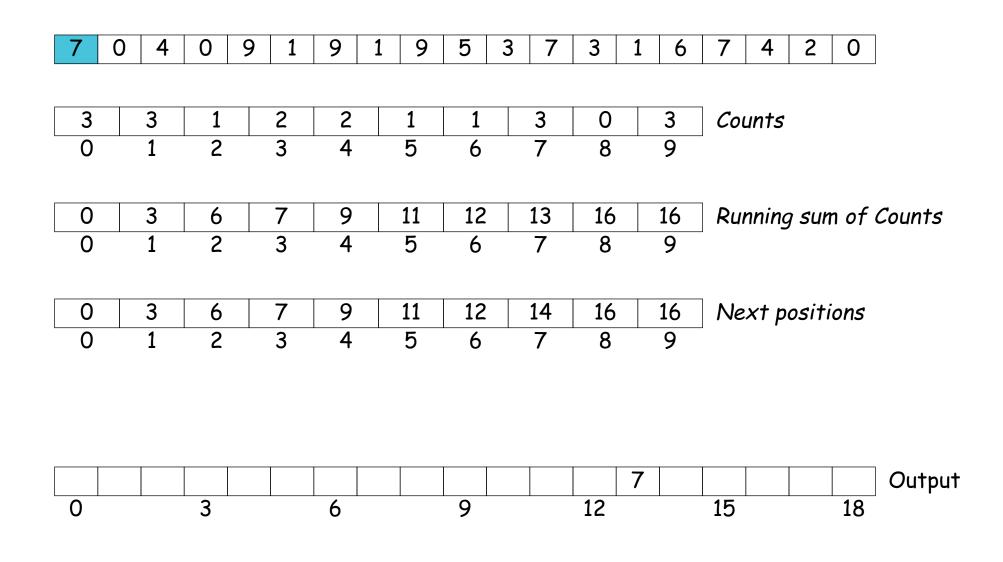


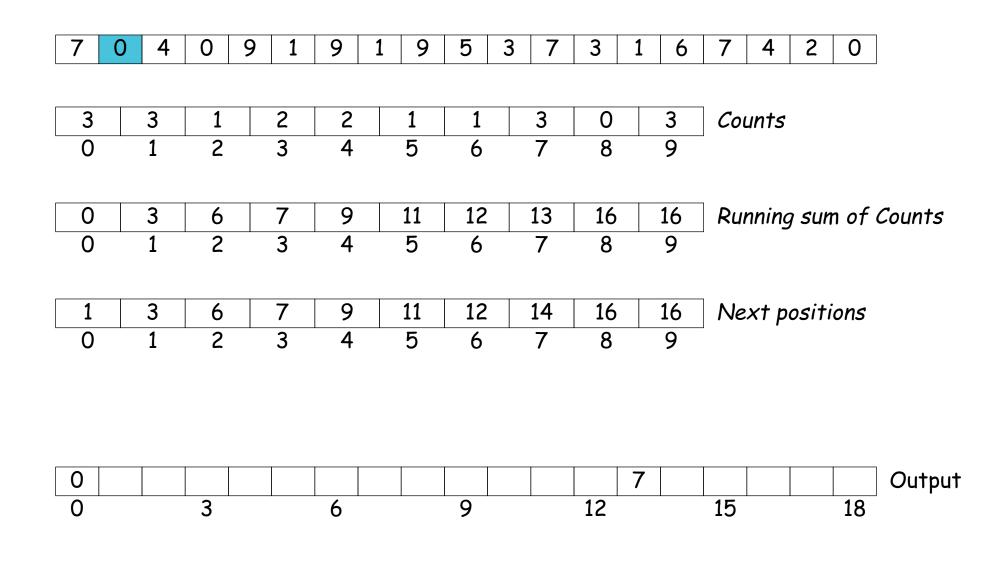
- "Counts" line gives # occurrences of each key.
- "Running sum" gives cumulative count of keys < each value...
- ... which tells us where to put each key:
- The first instance of key k goes into slot m, where m is the number of key instances that are < k; next k goes into slot m + 1, etc.

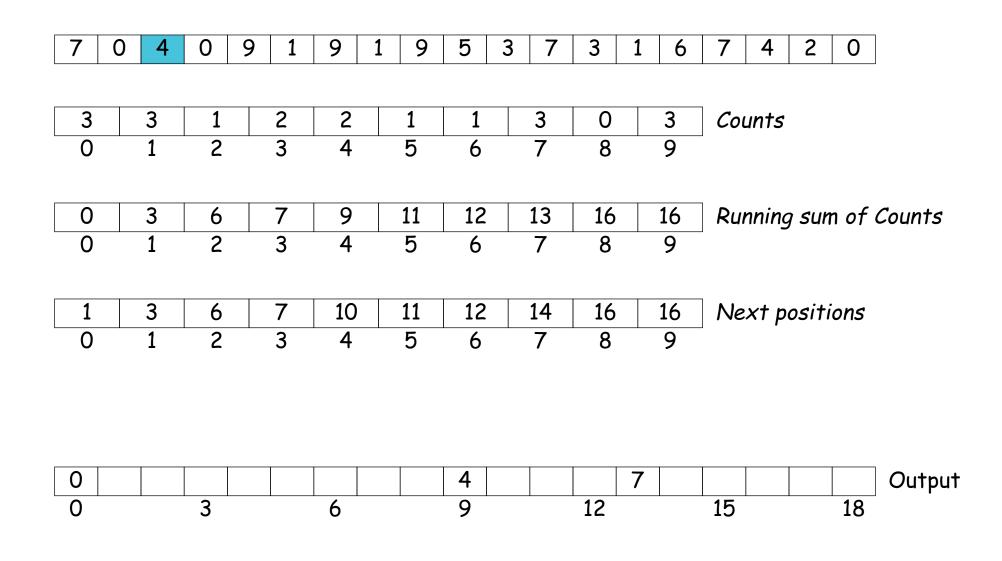
Last modified: Wed Mar 30 00:37:59 2022

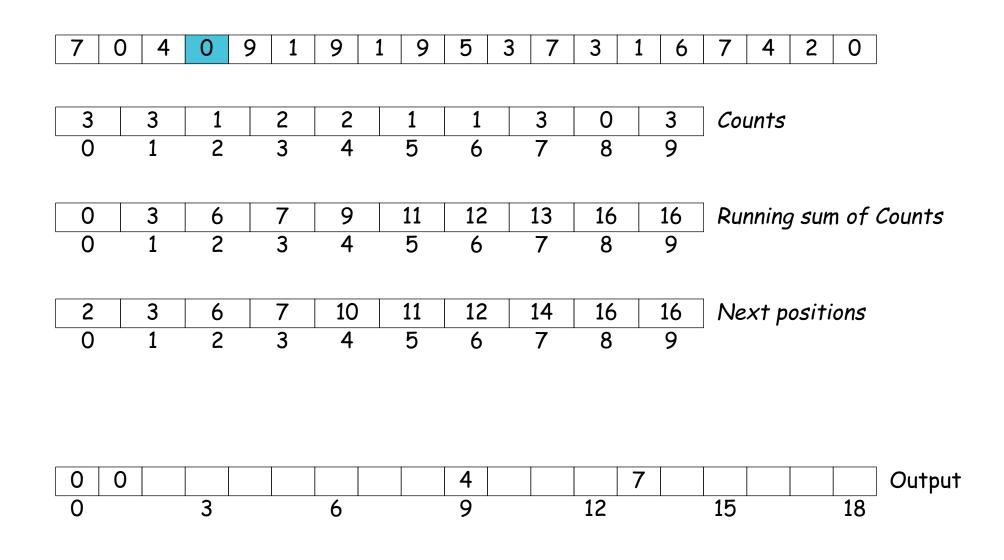
CS61B: Lecture #28 6

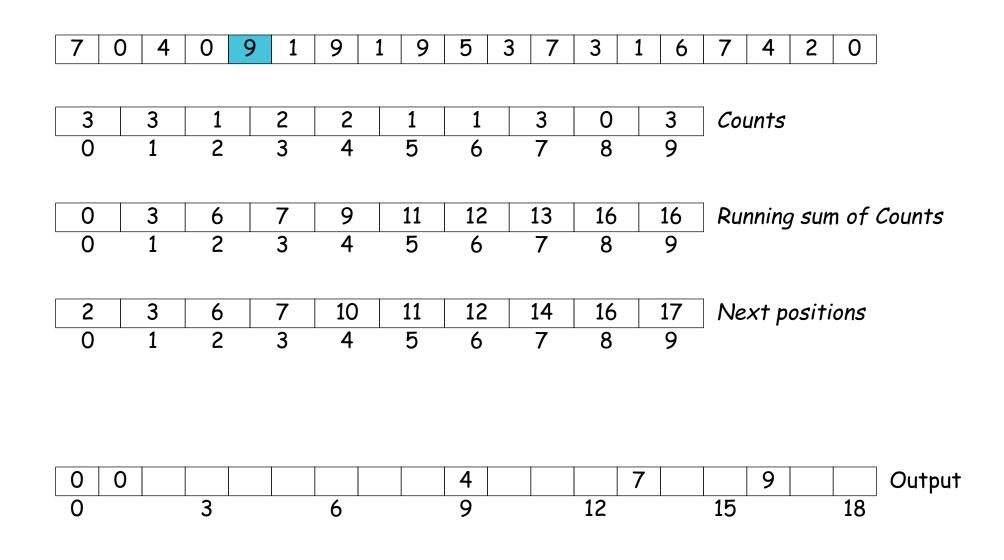


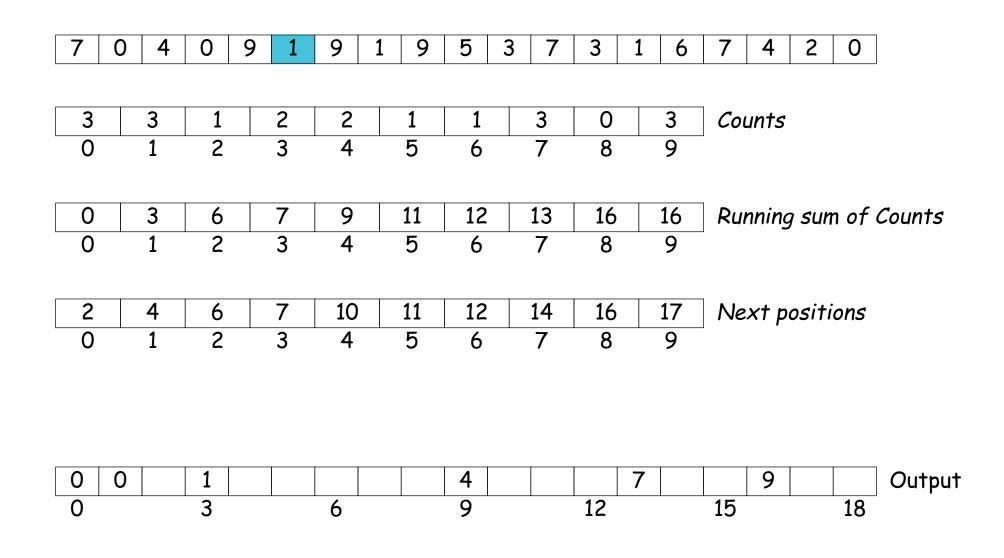


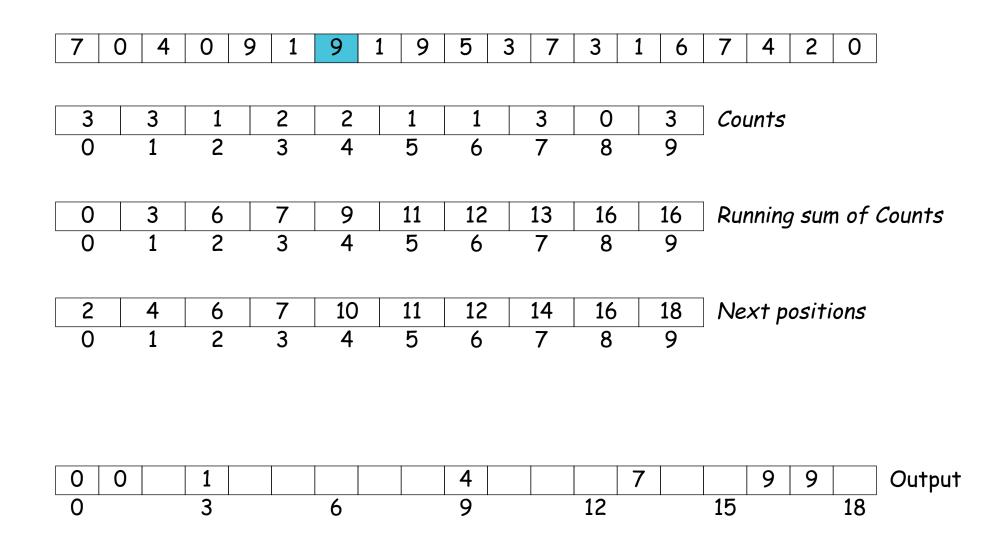


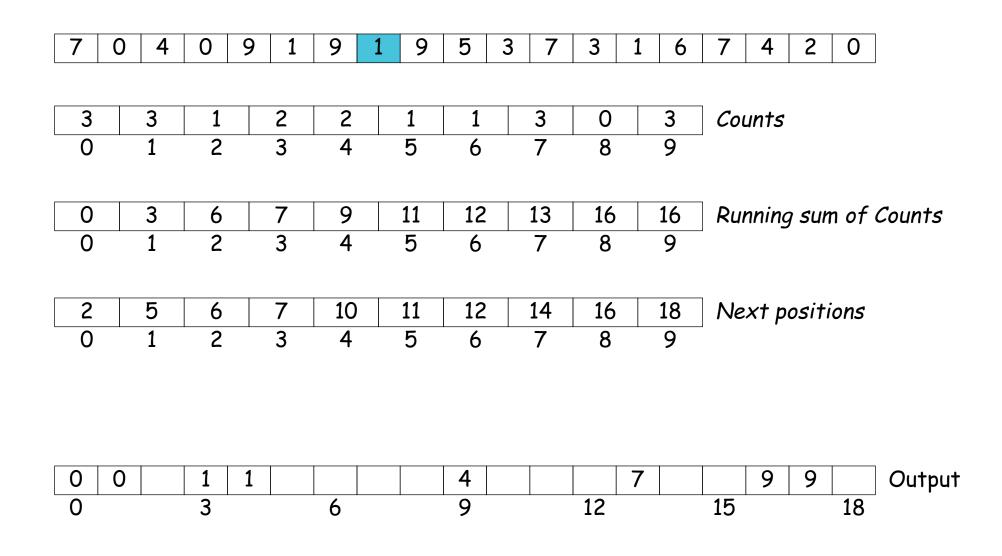


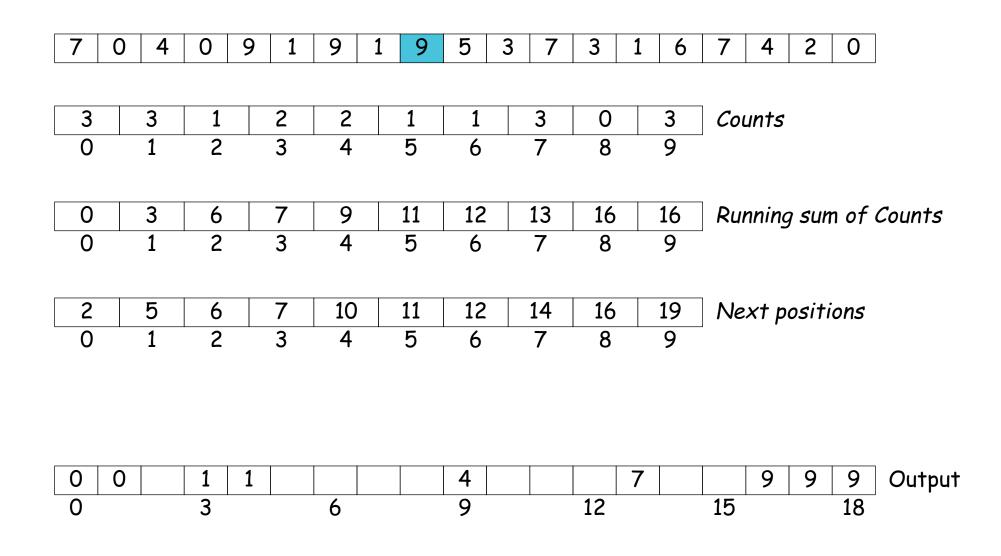


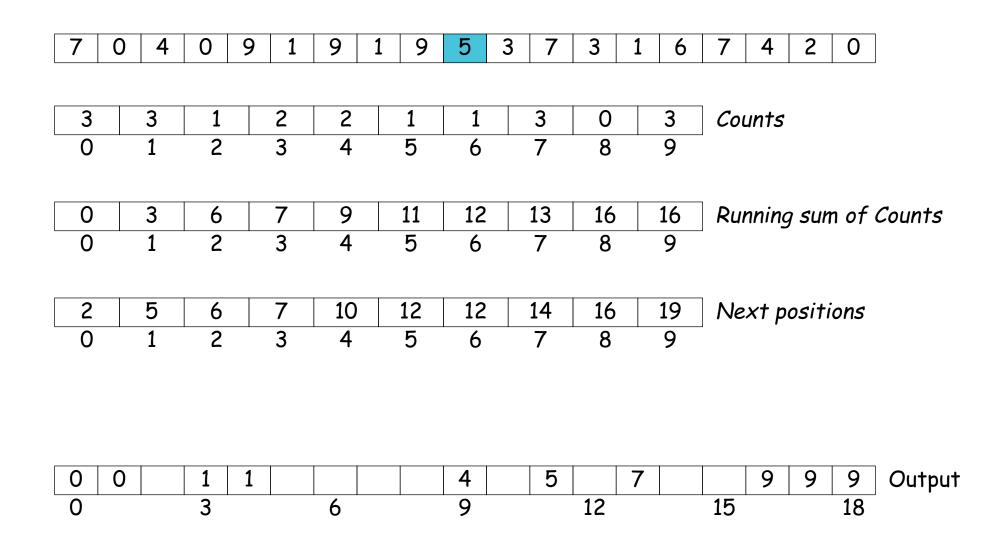


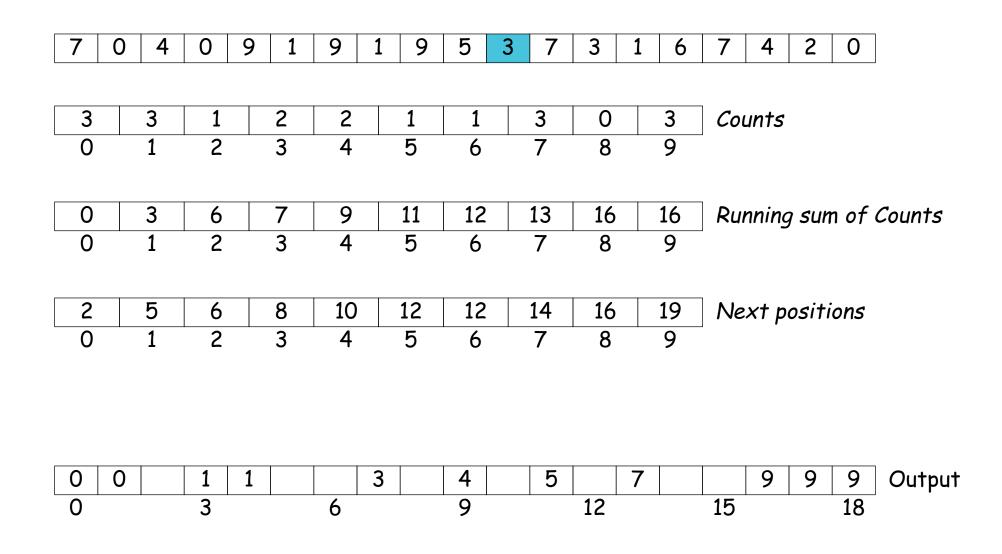


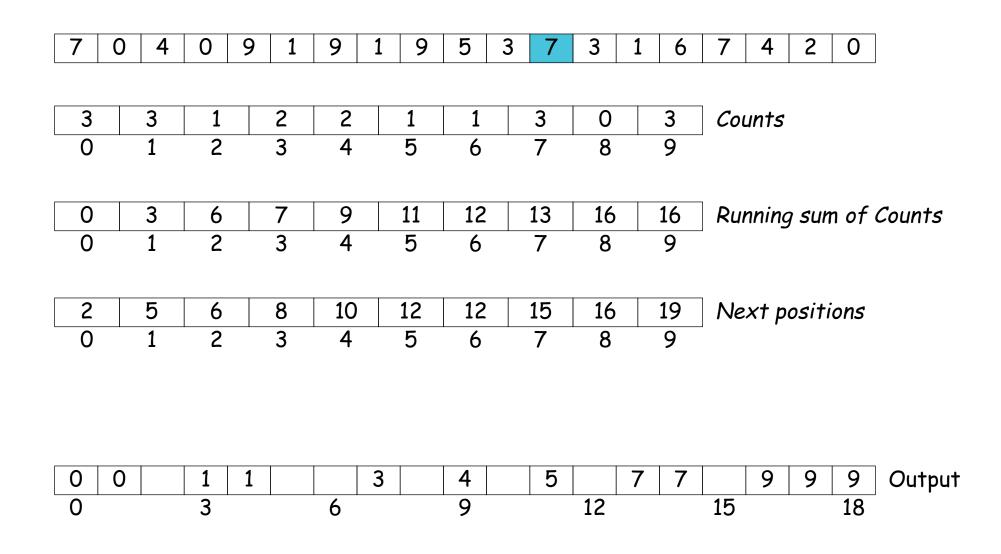


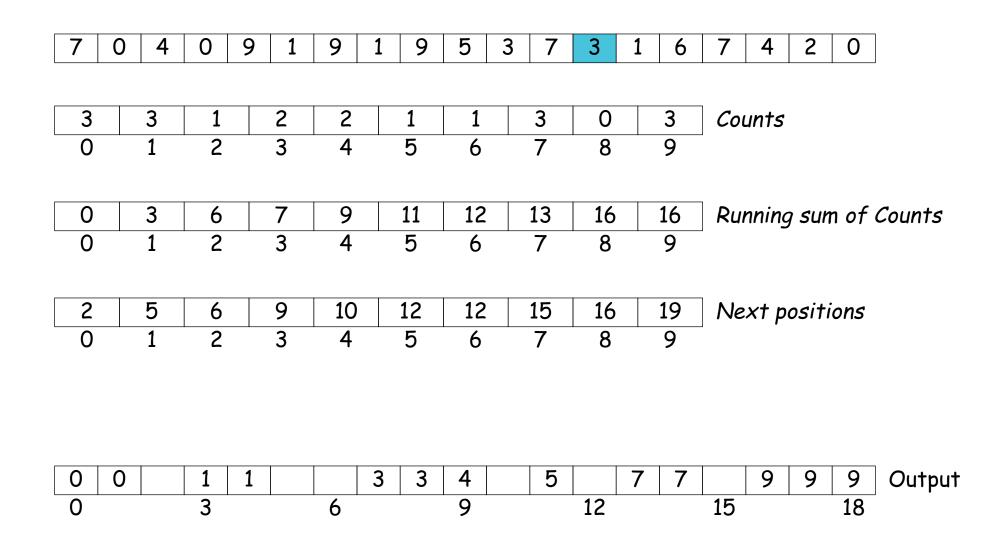


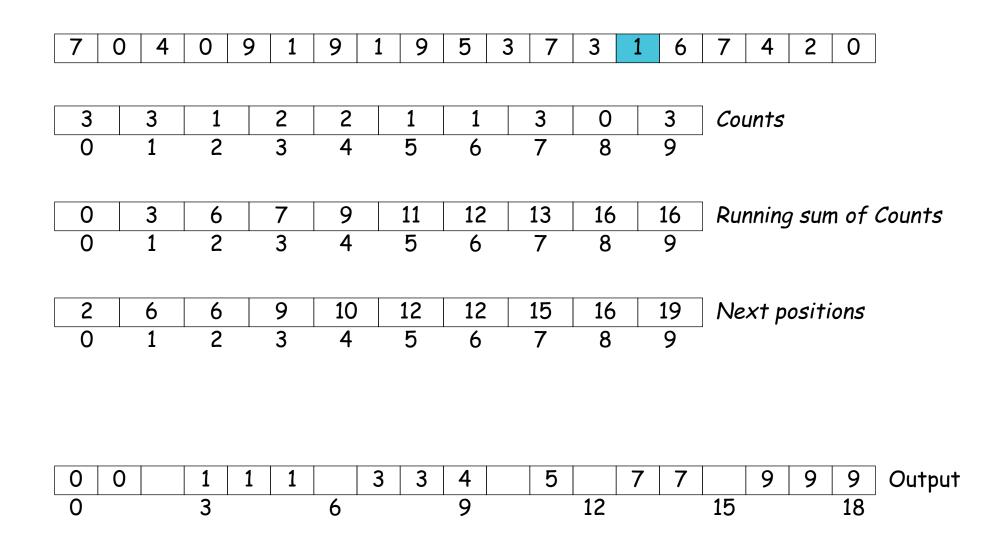


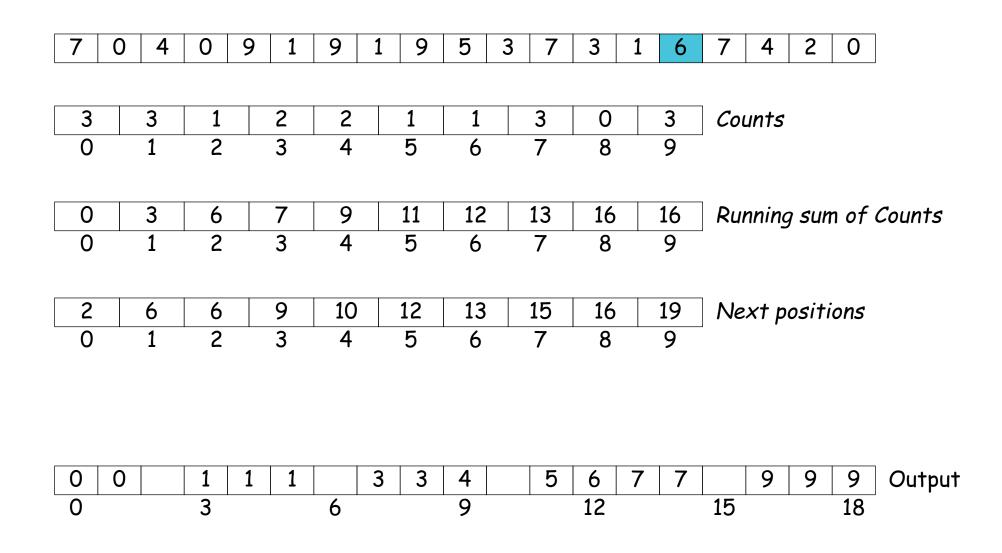


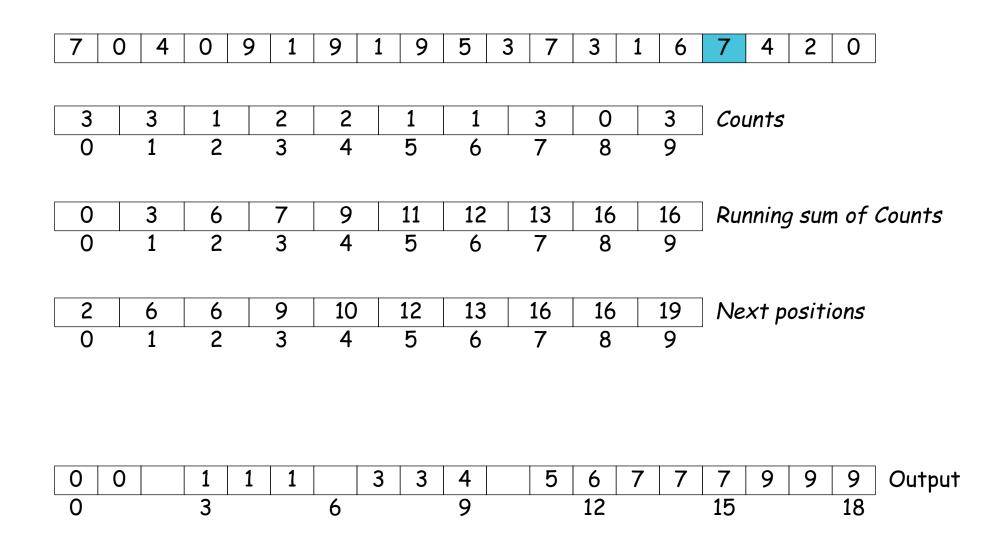


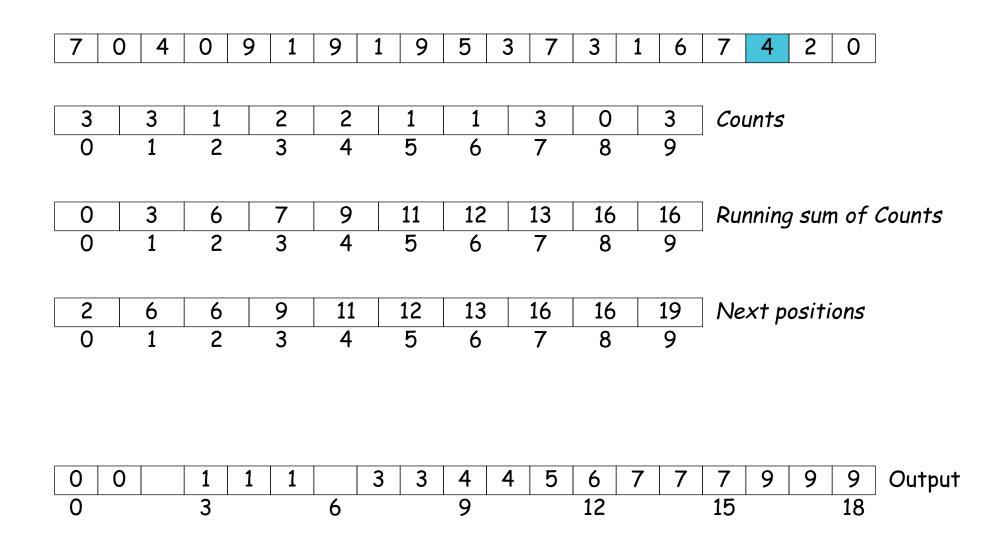


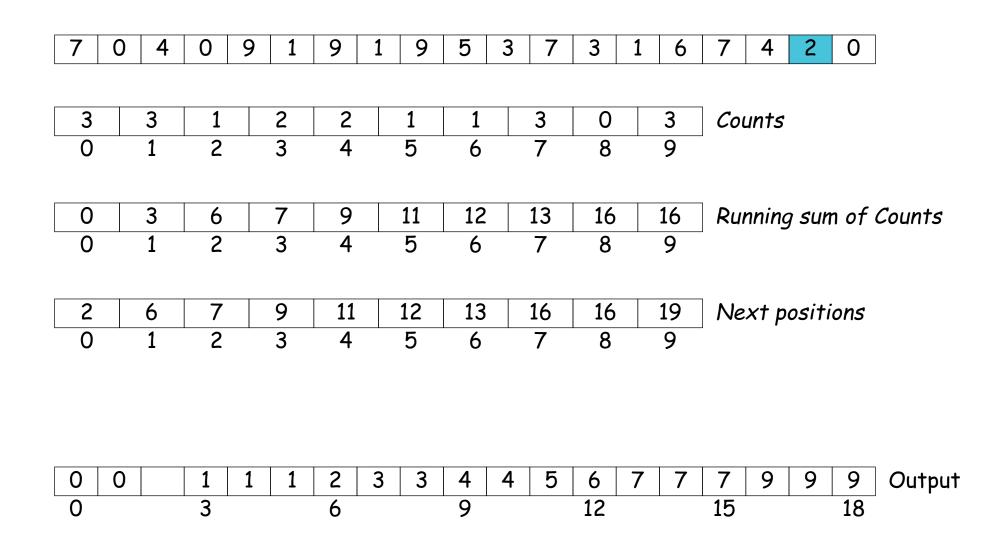


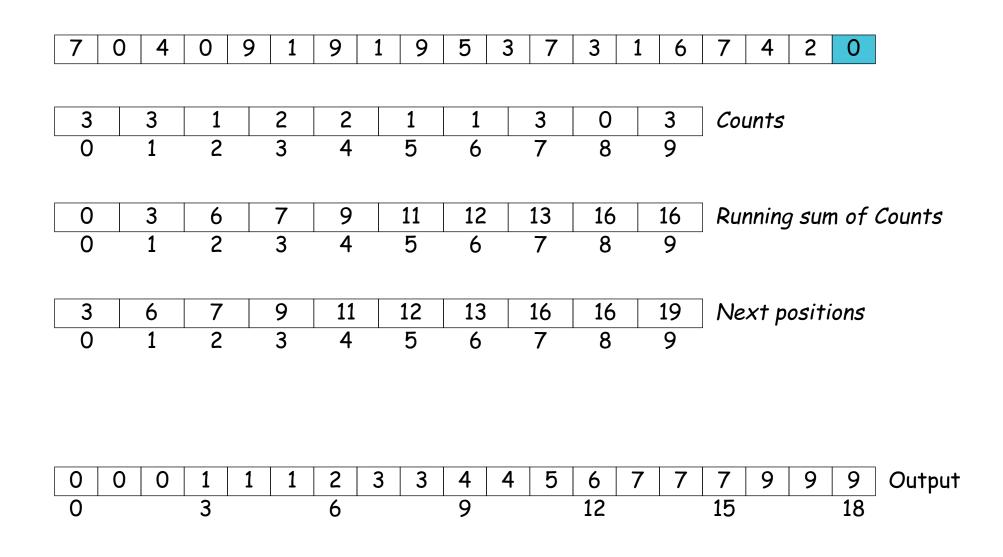










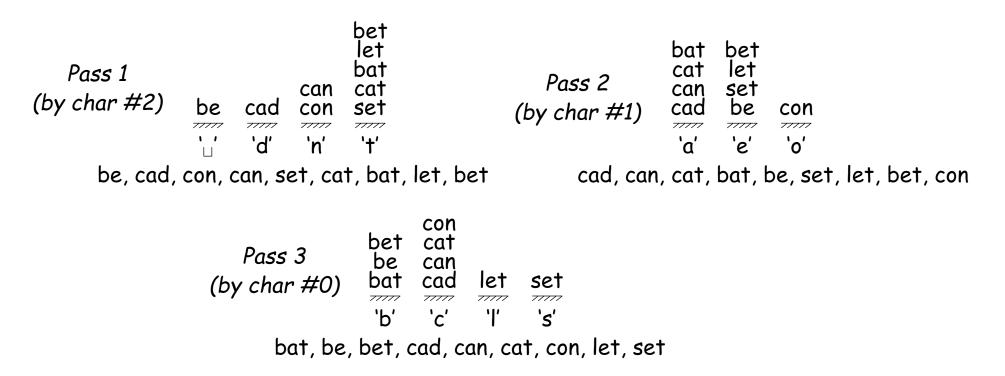


Radix Sort

Idea: Sort keys one character at a time.

- We can use distribution counting for each digit.
- Can work either right to left (LSD radix sort) or left to right (MSD radix sort)
- LSD radix sort is venerable: used for punched cards. Example:

Initial: set, cat, cad, con, bat, can, be, let, bet



MSD Radix Sort

- A bit more complicated: must keep lists from each step separate,
- But, we can stop processing 1-element lists

A	posn
* set, cat, cad, con, bat, can, be, let, bet	0
* bat, be, bet / cat, cad, con, can / let / set	1
bat / * be, bet / cat, cad, con, can / let / set	2
bat / be / bet / * cat, cad, con, can / let / set	1
bat / be / bet / * cat, cad, can / con / let / set	2
bat / be / bet / cad / can / cat / con / let / set	

- Here, slashes divide partially sorted sublists, which will never be moved into the spaces occupied by other sublists.
- Asterisks mark a sublist to be sorted on some character position.

Performance of Radix Sort

- Radix sort takes $\Theta(B)$ time where B is the total size of the key data (total characters).
- Up until now, we have measured sort times as functions of *#records*.
- How to compare these two different measures?
- \bullet To have N different records, one must have keys at least $\Theta(\lg N)$ long [why?]
- Furthermore, comparisons actually take time $\Theta(K)$ where K is the size of key in worst case [why?]
- So $N \lg N$ comparisons really means $N(\lg N)^2$ operations.
- While radix sort would take $B = N \lg N$ time for N records with minimal-length ($\lg N$) keys.
- On the other hand, we must work to get good constant factors with radix sort.

And Don't Forget Search Trees

Idea: A search tree is in sorted order, when read in inorder.

- Need *balance* to really use for sorting [next topic].
- \bullet Given balance, same performance as heapsort: N insertions in time $\lg N$ each, plus $\Theta(N)$ to traverse, gives

$$\Theta(N + N \lg N) = \Theta(N \lg N)$$

Summary

- Insertion sort: $\Theta(Nk)$ comparisons and moves, where k is maximum amount data is displaced from final position.
 - Good for small datasets or almost ordered data sets.
- Quicksort: $\Theta(N \lg N)$ with good constant factor if data is not pathological. Worst case $O(N^2)$.
- Merge sort: $\Theta(N \lg N)$ guaranteed. Good for external sorting.
- Heapsort, treesort with guaranteed balance: $\Theta(N \lg N)$ guaranteed.
- Radix sort, distribution sort: $\Theta(B)$ (number of bytes). Also good for external sorting.