
CS61B Lectures #28

Today:

• Lower bounds on sorting by comparison

• Distribution counting, radix sorts

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 1

Better than N lg N?
• We can prove that if all you can do to keys is compare them, then

sorting must take Ω(N lgN).

• Basic idea: there are N ! possible ways the input data could be
scrambled.

• Therefore, your program must be prepared to doN ! different combinations
of data-moving operations.

• Therefore, there must be N ! possible combinations of outcomes of
all the if-tests in your program, since those determine what data
gets moved where (we’re assuming that comparisons are 2-way).

a < b

b < c

T

abc a < c

acb cab

a < c

F

bac b < c

bca cba

Decision Tree
Height ∝ Sorting time

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 2

Necessary Choices
• Since each if-test goes two ways, the number of possible different

outcomes for k if-tests is 2k.

• Thus, there must be enough tests so that 2k ≥ N !, which means
k ≥ lgN !.

• Using Stirling’s approximation,

N ! ∈
√
2πN







N

e







N 



1 + Θ






1

N











 ,

lg(N !) ∈ 1

2
(lg 2π + lgN) +N lgN −N lg e + lg





1 + Θ






1

N













= Θ(N lgN)

• This tells us that k, the worst-case number of tests needed to sort
N items by comparison sorting, is in Ω(N lgN): there must be cases
where we need (some multiple of) N lgN comparisons to sort N
things.

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 3

Beyond Comparison: Distribution
• But suppose we can do more than compare keys?

• For example, how can we sort a set of N different integer keys
whose values range from 0 to kN , for some small constant k?

• One technique is distribution sorting:
– Put the integers into N buckets; integer p goes to bucket ⌊p/k⌋.
– There are at most k keys per bucket, so concatenate and use
insertion sort, which will now be fast.

• E.g., k = 2, N = 10 :

Start:

14 3 10 13 4 2 19 17 0 9

In buckets:

| 0 | 3 2 | 4 | | 9 | 10 | 13 | 14 | 17 | 19 |

• Now insertion sort is fast. Putting the data in buckets takes time
Θ(N), and insertion sort takes Θ(kN). When k is fixed (constant),
we have sorting in time Θ(N).

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 4

Distribution Counting
• Another technique: count the number of items < 1, < 2, etc.

• If Mp = #items with value < p, then in sorted order, the jth item
with value p must be item #Mp + j.

• Suppose that one has a set of numbers in the range [0, 1000) (possibly
with duplicates) and that exactly 15 of them are less than 50, which
is also in the set. Then the result of sorting will look like this:

result:

0

· · · 50

15

· · ·
999

• In other words, the count of numbers < k gives the index of k in
the output array.

• If there are N items in the range 0..M−1, this gives another linear-
time—Θ(M +N))—algorithm (We include M and N here to allow for
both duplicates and for cases where M ≫ N .)

• [Postscript on notation: the notations [A,B], (A,B), [A,B), and (A,B] above refer to intervals.

The use of parentheses vs. square brackets reflects the distinction between open and closed

intervals. Thus x ∈ [A,B] iff A ≤ x ≤ B, while x ∈ [A,B) iff A ≤ x < B, etc.]

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 5

Distribution Counting Example
• Suppose all items are between 0 and 9 as in this example:

7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0

3
0

3
1

1
2

2
3

2
4

1
5

1
6

3
7

0
8

3
9

Counts

0
< 0

3
< 1

6
< 2

7
< 3

9
< 4

11
< 5

12
< 6

13
< 7

16
< 8

16
< 9

Running sum

0
0

0 0 1
3

1 1 2
6

3 3 4
9

4 5
11

6
12

7
13

7 7 9
16

9 9

• “Counts” line gives # occurrences of each key.

• “Running sum” gives cumulative count of keys < each value. . .

• . . . which tells us where to put each key:

• The first instance of key k goes into slot m, where m is the number
of key instances that are < k; next k goes into slot m + 1, etc.

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 6

Distribution Counting Example (II)

7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0

3
0

3
1

1
2

2
3

2
4

1
5

1
6

3
7

0
8

3
9

Counts

0 1 2 3 4 5 6 7 8 9
0 3 6 7 9 11 12 13 16 16 Running sum of Counts

0 1 2 3 4 5 6 7 8 9
Next positions0 3 6 7 9 11 12 13 16 16

0 3 6 9 12 15 18
Output

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 7

Distribution Counting Example (II)

7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0

3
0

3
1

1
2

2
3

2
4

1
5

1
6

3
7

0
8

3
9

Counts

0 1 2 3 4 5 6 7 8 9
0 3 6 7 9 11 12 13 16 16 Running sum of Counts

0 1 2 3 4 5 6 7 8 9
Next positions0 3 6 7 9 11 12 14 16 16

0 3 6 9 12 15 18
Output7

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 8

Distribution Counting Example (II)

7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0

3
0

3
1

1
2

2
3

2
4

1
5

1
6

3
7

0
8

3
9

Counts

0 1 2 3 4 5 6 7 8 9
0 3 6 7 9 11 12 13 16 16 Running sum of Counts

0 1 2 3 4 5 6 7 8 9
Next positions1 3 6 7 9 11 12 14 16 16

0 3 6 9 12 15 18
Output0 7

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 9

Distribution Counting Example (II)

7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0

3
0

3
1

1
2

2
3

2
4

1
5

1
6

3
7

0
8

3
9

Counts

0 1 2 3 4 5 6 7 8 9
0 3 6 7 9 11 12 13 16 16 Running sum of Counts

0 1 2 3 4 5 6 7 8 9
Next positions1 3 6 7 10 11 12 14 16 16

0 3 6 9 12 15 18
Output0 4 7

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 10

Distribution Counting Example (II)

7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0

3
0

3
1

1
2

2
3

2
4

1
5

1
6

3
7

0
8

3
9

Counts

0 1 2 3 4 5 6 7 8 9
0 3 6 7 9 11 12 13 16 16 Running sum of Counts

0 1 2 3 4 5 6 7 8 9
Next positions2 3 6 7 10 11 12 14 16 16

0 3 6 9 12 15 18
Output0 0 4 7

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 11

Distribution Counting Example (II)

7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0

3
0

3
1

1
2

2
3

2
4

1
5

1
6

3
7

0
8

3
9

Counts

0 1 2 3 4 5 6 7 8 9
0 3 6 7 9 11 12 13 16 16 Running sum of Counts

0 1 2 3 4 5 6 7 8 9
Next positions2 3 6 7 10 11 12 14 16 17

0 3 6 9 12 15 18
Output0 0 4 7 9

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 12

Distribution Counting Example (II)

7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0

3
0

3
1

1
2

2
3

2
4

1
5

1
6

3
7

0
8

3
9

Counts

0 1 2 3 4 5 6 7 8 9
0 3 6 7 9 11 12 13 16 16 Running sum of Counts

0 1 2 3 4 5 6 7 8 9
Next positions2 4 6 7 10 11 12 14 16 17

0 3 6 9 12 15 18
Output0 0 1 4 7 9

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 13

Distribution Counting Example (II)

7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0

3
0

3
1

1
2

2
3

2
4

1
5

1
6

3
7

0
8

3
9

Counts

0 1 2 3 4 5 6 7 8 9
0 3 6 7 9 11 12 13 16 16 Running sum of Counts

0 1 2 3 4 5 6 7 8 9
Next positions2 4 6 7 10 11 12 14 16 18

0 3 6 9 12 15 18
Output0 0 1 4 7 9 9

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 14

Distribution Counting Example (II)

7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0

3
0

3
1

1
2

2
3

2
4

1
5

1
6

3
7

0
8

3
9

Counts

0 1 2 3 4 5 6 7 8 9
0 3 6 7 9 11 12 13 16 16 Running sum of Counts

0 1 2 3 4 5 6 7 8 9
Next positions2 5 6 7 10 11 12 14 16 18

0 3 6 9 12 15 18
Output0 0 1 1 4 7 9 9

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 15

Distribution Counting Example (II)

7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0

3
0

3
1

1
2

2
3

2
4

1
5

1
6

3
7

0
8

3
9

Counts

0 1 2 3 4 5 6 7 8 9
0 3 6 7 9 11 12 13 16 16 Running sum of Counts

0 1 2 3 4 5 6 7 8 9
Next positions2 5 6 7 10 11 12 14 16 19

0 3 6 9 12 15 18
Output0 0 1 1 4 7 9 9 9

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 16

Distribution Counting Example (II)

7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0

3
0

3
1

1
2

2
3

2
4

1
5

1
6

3
7

0
8

3
9

Counts

0 1 2 3 4 5 6 7 8 9
0 3 6 7 9 11 12 13 16 16 Running sum of Counts

0 1 2 3 4 5 6 7 8 9
Next positions2 5 6 7 10 12 12 14 16 19

0 3 6 9 12 15 18
Output0 0 1 1 4 5 7 9 9 9

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 17

Distribution Counting Example (II)

7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0

3
0

3
1

1
2

2
3

2
4

1
5

1
6

3
7

0
8

3
9

Counts

0 1 2 3 4 5 6 7 8 9
0 3 6 7 9 11 12 13 16 16 Running sum of Counts

0 1 2 3 4 5 6 7 8 9
Next positions2 5 6 8 10 12 12 14 16 19

0 3 6 9 12 15 18
Output0 0 1 1 3 4 5 7 9 9 9

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 18

Distribution Counting Example (II)

7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0

3
0

3
1

1
2

2
3

2
4

1
5

1
6

3
7

0
8

3
9

Counts

0 1 2 3 4 5 6 7 8 9
0 3 6 7 9 11 12 13 16 16 Running sum of Counts

0 1 2 3 4 5 6 7 8 9
Next positions2 5 6 8 10 12 12 15 16 19

0 3 6 9 12 15 18
Output0 0 1 1 3 4 5 7 7 9 9 9

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 19

Distribution Counting Example (II)

7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0

3
0

3
1

1
2

2
3

2
4

1
5

1
6

3
7

0
8

3
9

Counts

0 1 2 3 4 5 6 7 8 9
0 3 6 7 9 11 12 13 16 16 Running sum of Counts

0 1 2 3 4 5 6 7 8 9
Next positions2 5 6 9 10 12 12 15 16 19

0 3 6 9 12 15 18
Output0 0 1 1 3 3 4 5 7 7 9 9 9

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 20

Distribution Counting Example (II)

7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0

3
0

3
1

1
2

2
3

2
4

1
5

1
6

3
7

0
8

3
9

Counts

0 1 2 3 4 5 6 7 8 9
0 3 6 7 9 11 12 13 16 16 Running sum of Counts

0 1 2 3 4 5 6 7 8 9
Next positions2 6 6 9 10 12 12 15 16 19

0 3 6 9 12 15 18
Output0 0 1 1 1 3 3 4 5 7 7 9 9 9

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 21

Distribution Counting Example (II)

7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0

3
0

3
1

1
2

2
3

2
4

1
5

1
6

3
7

0
8

3
9

Counts

0 1 2 3 4 5 6 7 8 9
0 3 6 7 9 11 12 13 16 16 Running sum of Counts

0 1 2 3 4 5 6 7 8 9
Next positions2 6 6 9 10 12 13 15 16 19

0 3 6 9 12 15 18
Output0 0 1 1 1 3 3 4 5 6 7 7 9 9 9

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 22

Distribution Counting Example (II)

7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0

3
0

3
1

1
2

2
3

2
4

1
5

1
6

3
7

0
8

3
9

Counts

0 1 2 3 4 5 6 7 8 9
0 3 6 7 9 11 12 13 16 16 Running sum of Counts

0 1 2 3 4 5 6 7 8 9
Next positions2 6 6 9 10 12 13 16 16 19

0 3 6 9 12 15 18
Output0 0 1 1 1 3 3 4 5 6 7 7 7 9 9 9

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 23

Distribution Counting Example (II)

7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0

3
0

3
1

1
2

2
3

2
4

1
5

1
6

3
7

0
8

3
9

Counts

0 1 2 3 4 5 6 7 8 9
0 3 6 7 9 11 12 13 16 16 Running sum of Counts

0 1 2 3 4 5 6 7 8 9
Next positions2 6 6 9 11 12 13 16 16 19

0 3 6 9 12 15 18
Output0 0 1 1 1 3 3 4 4 5 6 7 7 7 9 9 9

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 24

Distribution Counting Example (II)

7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0

3
0

3
1

1
2

2
3

2
4

1
5

1
6

3
7

0
8

3
9

Counts

0 1 2 3 4 5 6 7 8 9
0 3 6 7 9 11 12 13 16 16 Running sum of Counts

0 1 2 3 4 5 6 7 8 9
Next positions2 6 7 9 11 12 13 16 16 19

0 3 6 9 12 15 18
Output0 0 1 1 1 2 3 3 4 4 5 6 7 7 7 9 9 9

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 25

Distribution Counting Example (II)

7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0

3
0

3
1

1
2

2
3

2
4

1
5

1
6

3
7

0
8

3
9

Counts

0 1 2 3 4 5 6 7 8 9
0 3 6 7 9 11 12 13 16 16 Running sum of Counts

0 1 2 3 4 5 6 7 8 9
Next positions3 6 7 9 11 12 13 16 16 19

0 3 6 9 12 15 18
Output0 0 0 1 1 1 2 3 3 4 4 5 6 7 7 7 9 9 9

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 26

Radix Sort

Idea: Sort keys one character at a time.

• We can use distribution counting for each digit.

• Can work either right to left (LSD radix sort) or left to right (MSD
radix sort)

• LSD radix sort is venerable: used for punched cards. Example:

Initial: set, cat, cad, con, bat, can, be, let, bet

be

‘⊔’

cad

‘d’

can
con

‘n’

bet
let
bat
cat
set

‘t’

Pass 1
(by char #2)

be, cad, con, can, set, cat, bat, let, bet

bat
cat
can
cad

‘a’

bet
let
set
be

‘e’

con

‘o’

Pass 2
(by char #1)

cad, can, cat, bat, be, set, let, bet, con

bet
be
bat

‘b’

con
cat
can
cad

‘c’

let

‘l’

set

‘s’

Pass 3
(by char #0)

bat, be, bet, cad, can, cat, con, let, set

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 27

MSD Radix Sort
• A bit more complicated: must keep lists from each step separate,

• But, we can stop processing 1-element lists

A posn

⋆ set, cat, cad, con, bat, can, be, let, bet 0
⋆ bat, be, bet / cat, cad, con, can / let / set 1
bat / ⋆ be, bet / cat, cad, con, can / let / set 2
bat / be / bet / ⋆ cat, cad, con, can / let / set 1
bat / be / bet / ⋆ cat, cad, can / con / let / set 2
bat / be / bet / cad / can / cat / con / let / set

• Here, slashes divide partially sorted sublists, which will never be
moved into the spaces occupied by other sublists.

• Asterisks mark a sublist to be sorted on some character position.

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 28

Performance of Radix Sort
• Radix sort takes Θ(B) time where B is the total size of the key data

(total characters) .

• Up until now, we have measured sort times as functions of #records.

• How to compare these two different measures?

• To have N different records, one must have keys at least Θ(lgN)
long [why?]

• Furthermore, comparisons actually take time Θ(K) where K is the
size of key in worst case [why?]

• So N lgN comparisons really means N(lgN)2 operations.

• While radix sort would take B = N lgN time for N records with
minimal-length (lgN) keys.

• On the other hand, we must work to get good constant factors with
radix sort.

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 29

And Don’t Forget Search Trees

Idea: A search tree is in sorted order, when read in inorder.

• Need balance to really use for sorting [next topic].

• Given balance, same performance as heapsort: N insertions in time
lgN each, plus Θ(N) to traverse, gives

Θ(N +N lgN) = Θ(N lgN)

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 30

Summary
• Insertion sort: Θ(Nk) comparisons and moves, where k is maximum

amount data is displaced from final position.

– Good for small datasets or almost ordered data sets.

• Quicksort: Θ(N lgN) with good constant factor if data is not pathological.
Worst case O(N 2).

• Merge sort: Θ(N lgN) guaranteed. Good for external sorting.

• Heapsort, treesort with guaranteed balance: Θ(N lgN) guaranteed.

• Radix sort, distribution sort: Θ(B) (number of bytes). Also good for
external sorting.

Last modified: Wed Mar 30 00:37:59 2022 CS61B: Lecture #28 31

	CS61B Lectures #28
	Better than N lg N?
	Necessary Choices
	Beyond Comparison: Distribution
	Distribution Counting
	Distribution Counting Example
	Distribution Counting Example (II)
	Radix Sort
	MSD Radix Sort
	Performance of Radix Sort
	And Don't Forget Search Trees
	Summary

