Lecture #39: Compression

Credits: This presentation is largely taken from CS61B lectures by
Josh Hug.
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Compression and Git

e Git creates a new object in the repository each time a changed file
or directory is committed.

e Things can get crowded as a result.
e To save space, it compresses each object.

e Every now and then (such as when sending or receiving from another
repository), it packs objects together into a single file: a "packfile.”

e Besides just sticking the files tfogether, uses a technique called
delta compression.
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Delta Compression

e Typically, there will be many versions of a file in a Git repository:
the latest, and previous edits of it, each in different commits.

e Git doesn't keep track explicitly of which file came from where,
since that's hard in general:

- What if a file is split into two, or two are spliced together?

e But, can guess that files with same name and (roughly) same size in
two commits are probably versions of the same file.

e When that happens, store one of them as a pointer to the other,
plus a list of changes.
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Delta Compression (II)

e So, store two versions

Vi
My eyes are fully open to my awful
situation.
I shall go at once to Roderick and
make him an oration. I shall tell him
I've recovered my forgotten moral
senses,

as
Vi

[Fetch 1st 6 lines from V2]

Last modified: Wed Apr 27 11:58:18 2022

v2
My eyes are fully open to my awful
situation.
I shall go at once to Roderick and
make him an oration.
I shall tell him I've recovered my
forgotten moral senses,
and don't give twopence halfpenney
for any consequences.

V2

My eyes are fully open to my awful
situation.

I shall go at once to Roderick and
make him an oration.

I shall tell him I've recovered my
forgotten moral senses,

and don't give twopence halfpenney
for any consequences.
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Two Unix Compression Programs

$ gzip -k lect37.pic.in # The GNU version of ZIP

$ bzip2 -k lect37.pic.in # Another compression program
$ 1s -1 lect37.pic*

# Size

# (bytes)

-rw-r--r-— 1 hilfingr lisp 14794 Apr 25 11:35 lect37.pic.in

-rw-r--r-- 1 hilfingr lisp 5426 Apr 25 11:35 lect37.pic.in.bz2 # Roughly 1/3 size
-rw-r--r—— 1 hilfingr lisp 5529 Apr 25 11:35 lect37.pic.in.gz

$ gzip -k lect37.pdf

$ 1s -1 lect37.pdfx*

-rw-r--r—— 1 hilfingr lisp 79932 Apr 27 11:21 lect37.pdf

-rw-r—-r—— 1 hilfingr lisp 66021 Apr 27 11:21 lect37.pdf.gz # Roughly 83 size
$ gunzip < lect37.pic.in.gz > lect37.pic.in.ungzip # Uncompress

$ diff lect37.pic.in lect37.pic.in.ungzip

$ # No difference from original (lossless)

$ gzip < lect37.pic.in.gz > lect37.pic.in.gz.gz

$ 1s -1 lect37.pic*gz

-rw-r--r-— 1 hilfingr lisp 5529 Apr 25 11:35 lect37.pic.in.gz

-rw-r——r—— 1 hilfingr lisp 5552 Apr 27 11:31 lect37.pic.in.gz.gz

$ # Compressing twice doesn’t help.
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Compression and Decompression

e A compression algorithm converts a stream of symbols into another,

smaller stream.

e It is called lossless if the algorithm is invertible (no information

lost).
e A common symbol is the bit:

‘ 00110000001100010011001000110011

\ 4

‘ 0000000100100011 —> Decompression —>

Compression

—> 0000000100100011 ‘

00110000001100010011001000110011 ‘

e Here, we simply replaced the 8-bit ASCII bit sequences for digits
(where, for example, the single character ‘0" is encoded as 0x30=0b00110000)

with 4-bit (binary-coded decimal).

e Call these 4-bit sequences codewords, which we associate with the
symbols in the original, uncompressed text.

e Can do better than 50% compression with English text.
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Example: Morse Code

A © Il U o6 mm
B mmeeoo V o0 0 mm
CEmommEe W 0mmmm
D mmee X mEE e e mm
E o a K3 B
F oomme Z B e e
: . 2 B K
e Compact, simple to transmit. H e0®®
e Actually use three symbols: I oo O NEN EEN NN EEN E=
dih, dah, and pause. J O mmmmmmm | 6mmmmmm——

K mm o mm 2 X3 R N

Pauses go between codewords. L ommee PO —
M I 4 o000
N mmeo 5 00000
O I =E =m N K XN X
P o mm mm o 7 EEEEOO0O
Q EEEEONE § INEEEeo
R oemme 2 1 §F §F K)
S 000
T
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Prefix Free Codes

e Morse code needs pauses between codewords to prevent ambiguities.

e Otherwise,

could be DEATH, BABE, or BATH.

e The problem is that Morse code allows many codewords to be prefixes
of other ones, so that it's difficult to know when you have come to
the end of one.

e Alternative is to devise prefix-free codes, in which no codeword is
a prefix of another.

e Then one always knows when a codeword ends.
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Prefix-Free Examples

Encoding A Encoding B
space 1 space 111
E 01 E 010
T 001 T 1000
A 0001 A 1010
O 00001 O 1011
I 000001 I 1100

e For example, "T ATE" is unambiguously

0000011000100101 in Encoding A, or
110011110101000010 in Encoding B.

e What data structures might you use to...
Encode? Decode?
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Prefix-Free Examples

Encoding A Encoding B
space 1 space 111
E 01 E 010
T 001 T 1000
A 0001 A 1010
O 00001 O 1011
I 000001 I 1100

e For example, "T ATE" is unambiguously

0000011000100101 in Encoding A, or
110011110101000010 in Encoding B.

e What data structures might you use to...
Encode? Ans: HashMap or array Decode?
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Prefix-Free Examples

Encoding A

space

1

Encoding B

E

01

space

111

001

E

010

0001

1000

00001

1010

Hlo|> |+

000001

1011

H O[> |

1100

e For example, "T ATE" is unambiguously

0000011000100101 in Encoding A, or
110011110101000010 in Encoding B.

e What data structures might you use to...

Encode? Ans: HashMap or array Decode? Ans: Trie
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Shannon-Fano Coding

Symbol | Frequency | Encoding

&= 0.35

s 0.17 @@J LN

v 0.17

NP 0.16
V 0.15

e Count frequencies of all characters in text to be compressed.

e Break grouped characters into two groups of roughly equal frequency.
e Encode left group with leading O, right group with leading 1.

e Repeat until all groups are of size 1.
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Shannon-Fano Coding

0 1

S O

Symbol | Frequency | Encoding
= 0.35 0...
I's 0.17 0...
v 0.17 1...
NP 0.16 1...
D 0.15 1.,

e Count frequencies of all characters in text to be compressed.

e Break grouped characters into two groups of roughly equal frequency.

e Encode left group with leading O, right group with leading 1.

e Repeat until all groups are of size 1.
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Shannon-Fano Coding

Symbol | Frequency | Encoding
=3 0.35 00 0
I's 0.17 01 1
v 0.17 1 :
I 0.16 1... 5| | v LI
A\Y 0.15 1...

e Count frequencies of all characters in text to be compressed.

e Break grouped characters into two groups of roughly equal frequency.
e Encode left group with leading O, right group with leading 1.

e Repeat until all groups are of size 1.
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Shannon-Fano Coding

Symbol | Frequency | Encoding
= 0.35 00
I's 0.17 01
v 0.17 10
NP 0.16 11. ..
D 0.15 11...

e Count frequencies of all characters in text to be compressed.

e Break grouped characters into two groups of roughly equal frequency.

e Encode left group with leading O, right group with leading 1.

e Repeat until all groups are of size 1.
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Shannon-Fano Coding

Symbol | Frequency | Encoding
I 0.35 00
I's 0.17 01
v 0.17 10
<L 0.16 110
A\Y 0.15 111

&=

=

/

€

e Count frequencies of all characters in text to be compressed.

e Break grouped characters into two groups of roughly equal frequency.

e Encode left group with leading O, right group with leading 1.

e Repeat until all groups are of size 1.
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Can We Do Better?

e We'll say an encoding of symbols to codewords that are bitstrings
is optimal for a particular text if it encodes the text in the fewest
bits.

e Shannon-Fano coding is good, but not optimal.

e The optimal solution was found by an MIT graduate student, David
Huffman, in a class taught by Fano. The students were given the
choice of taking the final or solving this problem (i.e., finding the
encoding and a proof of optimality).

e The result is called Huffman coding.

e That's right: Fano assigned a problem he hadn't been able to solve.
Professors do that occasionally.

e See also this article.
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https://www.google.com/url?q=http://www.huffmancoding.com/my-uncle/scientific-american&sa=D&ust=1588058638808000&usg=AFQjCNEMsHI2cxxuHcqgxstnw8GHCuWylw

Huffman Coding

0.31 0.34 0.31

o/ \ o/\ o/
CIREIRRVARN AN = k5 Y| I N = 5| v L N
0.35 0.17 0.17 0.16 0.15 0.35 0.17 0.17 0.35

e Put each symbol in a hode labeled with the symbol's relative frequency
(as before).

e Repeat the following until there is just one node:

- Combine the two nodes with smallest frequencies as children of a
new single node whose frequency is the sum of those of the two
nodes being combined.

- Let the edge to the left child be labeled ‘0" and to the right be
labeled 'T".

e The resulting tree shows the encoding for each symbol: concatenate
the edge labels on the path from the root to the symbol.
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0.34

0.31

o) 1 0

1

SAILREARRAR

0.35

Huffman Coding

| ob| V| [D] S

0.65

0.34

0

1

0 g

o)

1

0.35

SARLONLARRARL

e Put each symbol in a hode labeled with the symbol's relative frequency

(as before).

e Repeat the following until there is just one node:

- Combine the two nodes with smallest frequencies as children of a
new single node whose frequency is the sum of those of the two
nodes being combined.

- Let the edge to the left child be labeled ‘0" and to the right be

labeled '1’

e The resulting tree shows the encoding for each symbol: concatenate
the edge labels on the path from the root to the symbol.
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Comparison

Symbol | Frequency | Shannon-Fano | Huffman
6= 0.35 00 0
= 0.17 01 100
v 0.17 10 101
NP 0.16 110 110
A\Y 0.15 111 111

For this case, Shannon-Fano coding takes a weighted average of 2.31

bits per symbol, while Huf fman coding takes 2.3.
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LZW Coding

e So far, we have used systems with one codeword per symbol.
e To get better compression, must encoded multiple symbols per codeword.
e This will allow us to code strings such as

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
abababababababababababababababababababababa
abcdabcdeabcdefabcdefgabcdefghabcdefghiabcd

(each 43 characters long) in space that can be less than
43 x weighted average symbol length.

e In LZW coding, we create new codewords as we go along, each
corresponding to substrings of the text:
- Start with a trivial mapping of codewords to single symbols.

- After outputting a codeword that matches the longest possible
prefix, X, of the remaining input, add a new codeword Y that maps
to the substring X followed by the next input symbol.
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Example of LZW encoding

e Start with a trivial mapping of codewords to single symbols.

e After outputting a codeword that matches the longest possible prefix,
X, of the remaining input, add a new codeword Y that maps to the
substring X followed by the next input symbol.

Consider the following text as an example:
B="aababcabcdabcdeabcdefabcdefgabcdefgh"

We'll compute C(B), the encoding of B. Our codewords will consist of
8-bit ASCII codes (0x00-0x7f).
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LZW Step O: Initial state

B = [aJababcabcdabcdeabcdefabcdefgabcedefgh

Code String
0x61 a
0x62 b
0x63 c
O0x7e -
Ox7f <DEL>

C(B) =
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LZW Step 1

B = [aJababcabcdabcdeabcdefabcdefgabcedefgh

e Best prefix match in the table is 'a’, so output 0x61,

e And add [ala to the table with a new code.

Code

String

0x61

a

0x62

b

0x63

C

0x7e

Ox7f

<DEL>

0x80

aa
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C(B) = Ox61
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B = dlalbabcabcdabcdeabcdefabcdefgabedefgh

LZW Step 2

e Best prefix match in the table for remaining input is still 'd’, so

output Ox61,
e And add [aDb to the table with a new code.

Code

String

0x61

a

0x62

b

0x63

C

0x7e

Ox7f

<DEL>

0x80

aa

0x81

ab
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C(B) = Ox6161
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LZW Step 3

B = aablabcabcdabcdeabcdefabcdefgabedefgh

e Best prefix match in the table for remaining input is 'b’, so output
Ox62,

e And add [bla to the table with a new code.

Code

String

0x61

a

0x62

b

0x63

C

Ox7e

Ox7f

<DEL>

0x80

aa

0x81

ab

0x82

ba
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C(B) = Ox616162
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LZW Step 4

B - abcabcdabcdeabcdefabcdefgabedefgh

e Best prefix match in the table for remaining input is now ‘ab’, so
output 0x81 (half as many bits as ‘ab’).

e And add |ablc to the table with a new code.

Code String

0x61 a

0x62 b

0x63 c

R E C(B) = 0x61616281
0x7f <DEL>

0x80 aa

0x81 ab

0x82 ba

0x83 abc
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B =

LZW Step 5

'clabcdabcdeabcedefabcdefgabedefgh

e Best prefix match in the table for remaining input is now 'c’, so
output Ox63

e And add [cla to the table with a new code.

Code String
0x61 a
0x62 b
0x63 c
0x7e -
0x7f <DEL>
0x80 aa
0x81 ab
0x82 ba
0x83 abc
0x84 ca
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C(B) = 0x6161628163
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B =

LZW Step 6

abcdabcdeabcedefabcdefgabedefgh

e Best prefix match in the table for remaining input is now ???, so
output ???

e And add ??? to the table with a new code.

Code String
0x61 a
0x62 b
0x63 C
0x7e -
0x7f <DEL>
0x80 aa
0x81 ab
0x82 ba
0x83 abc
0x84 ca
0x85 777
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C(B) = 0x61616281637?
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LZW Step 6

B - abcdabcdeabcdefabedefgabedefgh

e Best prefix match in the table for remaining input is now ‘abc’, so
output Ox83

e And add |abcid to the table with a new code.

Code String
0x61 a
0x62 b
0x63 C
OxT7e -
oxt | <DEL> C(B) = 0x616162816383
0x80 aa
0x81 ab
0x82 ba
0x83 abc
0x84 ca
0x85 abcd
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LZW Step 7

B - diabcdeabcdefabcdefgabcdefgh

e Best prefix match in the table for remaining input is now ‘d’, so
output Ox64

e And add 'da’ to the table with a new code.

Code String
0x61 a
0x62 b
0x63 C
0x7e -
it C(B) = 0x61616281638364
0x80 aa
0x81 ab
0x82 ba
0x83 abc
0x84 ca
0x85 abcd
0x86 da
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B =

d

LZW Step 7

abcdeabcdefabcdefgabcedefgh

e Best prefix match in the table for remaining input is now ‘d’, so
output Ox64

e And add 'da’ to the table with a new code.

Code

String

0x61

a

0x62

b

0x63

C

C(B) = Ox61616281638364

Ox7e

Ox7f

<DEL>

- What's next?

0x80

aa

- What is the complete encoding? (When reviewing,

0x81

ab

0x82

ba

try to figure it out before looking at the next slide.)

0x83

abc

0x84

ca

0x85

abcd

0x86

da
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LZW Final State

B =
Code String
0x61 a
0x62 b
0x63 c Code String

0x87 abcde

O0x7e ~ 0x88 ea
Ox7f <DEL> 0x89 abcdef
0x80 aa 0x8a fa
0x81 ab 0x8b abcdefg
0x82 ba 0x8c ga
0x83 abc 0x8d abcdefgh
0x84 ca
0x85 abcd
0x86 da

To think

(200 bits)

C(B) = 0x616162316333643565
6639673068
(120 bits)

about: How might you represent this table to allow easily
finding the longest prefix at each step?
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Decompression

e Because each different input creates a different table, it would
seem that we need to provide the generated table in order to decode
a message.

e Interestingly, though, we don't!

e Suppose that, starting with the same initial table we did before,
with codes 0x00-Ox7f already assigned, we're given

C(B) = 0x616162816383
and wish to find B.

e We can see it starts with aab. What's next?

Code String
0x61 a
0x62 b
0x63 c
0x7e -
0x7f <DEL>
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Reconstructing the Coding Table (I)

e Idea is to reconstruct the table as we process each codeword in
C(B).

e Let S(X) mean "the symbols encoded by codeword X," and let Y}
mean character k of string Y.

e For each codeword, X, in C'(B), add S(X) to our result.

e Whenever we decoded two consecutive codewords, X; and X,, add a
new codeword that maps to S(X;) + S(X1)o

e Thus, we recapitulate a step in the compression operation that created
C(B) in the first place.

e Since we go from left to right, the table will (almost) always already
contain the mapping we need for the next codeword.
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LZW Decompression, Step 1

C(B) = 0x61/616281638364
e S(0x61) is 'a’ in the table, so add it to B.

e Don't have a previous codeword yet, so don't add anything to the
table.

Code String

0x61 a

0x62 b

0x63 c B=-a
0x7e -

0x7f <DEL>
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LZW Decompression, Step 2

C(B) = 0x61/61/6281638364
e S(0x61) is 'a’ in the table, so add it to B.

e We have two codewords—S(0x61)='a’ twice—so add 'aa’ to the table
as a hew codeword

Code String

0x61 a

0x62 b

0x63 C

B=aa

0x7e -

0x7f <DEL>

0x80 aa
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LZW Decompression, Step 3

C(B) = 0x6161[62/81638364

e S5(0x62) is 'b' in the table, so add it to B.

e We have two codewords—S(0x61)='a’ and S(0x62)="b'—so add 'ab’ to
the table as a new codeword.

Code String

0x61 a

0x62 b

0x63 C

B=aab

0x7e -

0x7f <DEL>

0x80 aa

0x81 ab
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LZW Decompression, Step 4

C(B) = 0x 811638364

e S(0x81) is 'ab’ in the table, so add it to B.

e We have two codewords—S(0x62)='b’' and S(0x81)='ab’'—so add 'ba’ to
the table as a new codeword.

Code String

0x61 a

0x62 b

0x63 C

e B = aabab
0x7f <DEL>

0x80 aa

0x81 ab

0x82 ba
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LZW Decompression, Step 5

C(B) = 0x
e S5(0x63) is 'c’ in the table, so add it to B.

e We have two codewords—S(0x81)='ab’ and S(0x63)="c'—so add 'abc’
to the table as a new codeword.

638364

Code String

0x61 a

0x62 b

0x63 C

Ox7e |~ B = aababc
0x7f <DEL>

0x80 aa

0x81 ab

0x82 ba

0x83 abc
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LZW Decompression, Step 6

C(B) = 0x 8364
e S5(0x83) is ??? in the table, so add it to B.

e We have two codewords—S(???)=??? and S(???)=???—so add ??? to
the table as a new codeword.

Last modified: Wed Apr 27 11:58:18 2022

Code String

0x61 a

0x62 b

0x63 C

T B = aababc???
0x80 aa

0x81 ab

0x82 ba

0x83 abc

7 Farale

CS61B: Lecture #39 41



C(B) = 0x

e 5(0x83) is 'abc’ in the table, so add it to B.
e We have two codewords—S(0x63)="c' and S(0x83)='abc'—so add 'ca’

33

LZW Decompression, Step 6

64

to the table as a new codeword.

Code String
0x61 a
0x62 b
0x63 C
0x7e -
0x7f <DEL>
0x80 aa
0x81 ab
0x82 ba
0x83 abc
0x84 ca
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C(B) = 0x

e S(0x64) is 'd' in the table, so add it to B.
e We have two codewords—S(0x83)='abc’' and S(0x64)='d'—so add '‘abcd’

LZW Decompression, Step 7

64

to the table as a new codeword.

Code String
0x61 a
0x62 b
0x63 C
0x7e -
0x7f <DEL>
0x80 aa
0x81 ab
0x82 ba
0x83 abc
0x84 ca
0x85 abcd
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Reconstructing the Coding Table (IT)

e In a previous slide, I said "...the table will (almost) always already
contain the mapping we need..."

e Unfortunately, there are cases where it doesn't.
e Consider the string B="cdcdcdc’ as an example.

e After we encode it, we end up with

Code String

0x61 a

0x62 b

0x63 c

C(B) = Ox63648082

0x7e -

0x7f <DEL>

0x80 cd

0x81 dc

0x82 cdc

e But decoding causes trouble...
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Tricky Decompression, Step 1

C(B) = 0x[63/648082
e S5(0x63) is 'c’ in the table, so add it to B.

e Don't have a previous codeword yet, so don't add anything to the
table.

Code String

0x61 a

0x62 b

0x63 c B=c¢
0x7e -

0x7f <DEL>
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Tricky Decompression, Step 2

C(B) = 0x63[64/8082

e S(0x64) is 'd' in the table, so add it to B.

e We have two codewords—S(0x63)='c' and S(0x64)='d'—so add 'cd' to
the table as a new codeword

Code String

0x61 a

0x62 b

0x63 C

B=cd

0x7e -

Ox7f <DEL>

0x80 cd
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Tricky Decompression, Step 3

C(B) = 0x 80182
e 5(0x80) is 'cd' in the table, so add it to B.

e We have two codewords—S(0x64)='d' and S(0x80)="cd'—so add 'dc’ to
the table as a new codeword

Code String

0x61 a

0x62 b

0x63 C

B = cdcd

0x7e -

0x7f <DEL>

0x80 cd

0x81 dc
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C(B) = 0x

Tricky Decompression, Step 4

32

e Oops! S(0x82) is not yet in the table. What now?

Code

String

0x61

a

0x62

b

0x63

C

0x7e

Ox7f

<DEL>

0x80

cd

0x81

dc

0x82

707

B = cdcd???

e Problem is that we could look ahead while coding, but can only look
behind when decoding.

e So must figure out what 0x82 is going to be by looking back.
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Tricky Decompression, Step 4 (Second Try)

C(B) = 0x

32

e 5(0x82)=7 (to be figured out).
e Previously decoded S(0x80)="cd" and now have S(0x82)=7, so will

add "cdZ," to the table as S(0x82).

e So Z starts with S(0x80) and therefore Z;, must be 'c'l

e Thus S(0x82) = S(0x80)+~, = 'cdc'.

Code

String

0x61

a

0x62

b

0x63

C

0x7e

~

Ox7f

<DEL>

0x80

cd

0x81

dc

0x82

cdc
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LZW Algorithm

e LZW is named for its inventors: Lempel, Ziv, and Welch.

e Was widely used at one time, but because of patent issues became
rather unpopular (especially among open-source folks).

e The patents expired in 2003 and 2004.

e Now found in the .gif files, some PDF files, the BSD Unix compress
utility and elsewhere.

e There are numerous other (and better) algorithms (such as those in
gzip and bzip2).

e The presentation here is considerably simplified.

- We used fixed-length (8-bit) codewords, but the full algorithm
produces variable-length codewords using (I) Huffman coding
(compressing the compression).

- The full algorithm clears the table from time to time fo get rid
of little-used codewords.
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Some Thoughts

e Compressing a compressed text doesn't result in much compression.
e Why must it be impossible to keep compressing a text?

e A program that takes no input and produces an output can be thought
of as an encodings of that output.

e Leading to the following question: Given a bitstream, what is the
length of the shortest program that can produce it?

e For any specific bitstream, there is a specific answer!

e This is a deep concept, known as Kolmogorov Complexity.
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Some Thoughts

e Compressing a compressed text doesn't result in much compression.
e Why must it be impossible to keep compressing a text?

e Otherwise you'd be able to compress any number of different messages
to 1 bit!

e A program that takes no input and produces an output can be thought
of as an encodings of that output.

e Leading to the following question: Given a bitstream, what is the
length of the shortest program that can produce it?

e For any specific bitstream, there is a specific answer!

e This is a deep concept, known as Kolmogorov Complexity.
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More Thoughts

e It's actually weird that one can compress much at all.

e Consider a 1000-character ASCII text (8000 bits), and suppose we
manage to compress it by 50%.

e There are 25" distinct messages in 8000 bits, but only 2" possible
messages in 4000 bits.

e That is, no matter what one's scheme, one can encode only 274 of
the possible 8000-bit messsages by 50%! Yet we do it all the time.

e Reason: Our texts have a great deal of redundancy (aka low information
entropy).

e Texts with high entropy—such as random bits, previously compressed
texts, or encrypted texts—are nearly incompressible.
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Git

e Git Actually uses a different scheme from LZW for compression: a
combination of LZ77 and Huffman coding.

e LZ77 is kind of like delta compression, but within the same text.

e Convert a text such as
One Mississippi, two Mississippi
into something like
One Mississippi, two <11,7>

where the <11,7> is intended to mean "the next 11 characters come
from the text that ends 7 characters before this point.”

e We add new symbols to the alphabet to represent these (length,
distance) inclusions.

e When done, Huffman encode the result.
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Lossy Compression

e For some applications, like compressing video and audio streams, it
really isn't necessary to be able to reproduce the exact stream.

e We can therefore get more compression by throwing away some
information.

e Reason: there is a limit to what human senses respond to.
e For example, we don't hear high frequencies, or see tiny color variations.

e Therefore, formats like JPEG, MP3, or MP4 use lossy compression
and reconstruct output that is (hopefully) imperceptibly different
from the original at large savings in size and bandwidth.,

e You can see more of this in EE120 and other courses.
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Wrapping Up
o Lossless compression saves space (and bandwidth) by exploiting redundancy

in data.

e Huffman and Shannon-Fano coding represent individual symbols of
the input with shorter codewords.

e LZW and similar codes represents multiple symbols with shorter
codewords.

e Both adapt their codewords to the text being compressed.

e Lossy compression both uses redundancy and exploits the fact that
certain consumers of compressed data (like humans) can't really use
all the information that could be encoded.
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