Lecture #39: Compression

Credits: This presentation is largely taken from CS61B lectures by
Josh Hug.

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 1

Compression and Git

e Git creates a new object in the repository each time a changed file
or directory is committed.

e Things can get crowded as a result.
e To save space, it compresses each object.

e Every now and then (such as when sending or receiving from another
repository), it packs objects together into a single file: a "packfile.”

e Besides just sticking the files tfogether, uses a technique called
delta compression.

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 2

Delta Compression

e Typically, there will be many versions of a file in a Git repository:
the latest, and previous edits of it, each in different commits.

e Git doesn't keep track explicitly of which file came from where,
since that's hard in general:

- What if a file is split into two, or two are spliced together?

e But, can guess that files with same name and (roughly) same size in
two commits are probably versions of the same file.

e When that happens, store one of them as a pointer to the other,
plus a list of changes.

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 3

Delta Compression (II)

e So, store two versions

Vi
My eyes are fully open to my awful
situation.
I shall go at once to Roderick and
make him an oration. I shall tell him
I've recovered my forgotten moral
senses,

as
Vi

[Fetch 1st 6 lines from V2]

Last modified: Wed Apr 27 11:58:18 2022

v2
My eyes are fully open to my awful
situation.
I shall go at once to Roderick and
make him an oration.
I shall tell him I've recovered my
forgotten moral senses,
and don't give twopence halfpenney
for any consequences.

V2

My eyes are fully open to my awful
situation.

I shall go at once to Roderick and
make him an oration.

I shall tell him I've recovered my
forgotten moral senses,

and don't give twopence halfpenney
for any consequences.

CS61B: Lecture #39 4

Two Unix Compression Programs

$ gzip -k lect37.pic.in # The GNU version of ZIP

$ bzip2 -k lect37.pic.in # Another compression program
$ 1s -1 lect37.pic*

Size

(bytes)

-rw-r--r-— 1 hilfingr lisp 14794 Apr 25 11:35 lect37.pic.in

-rw-r--r-- 1 hilfingr lisp 5426 Apr 25 11:35 lect37.pic.in.bz2 # Roughly 1/3 size
-rw-r--r—— 1 hilfingr lisp 5529 Apr 25 11:35 lect37.pic.in.gz

$ gzip -k lect37.pdf

$ 1s -1 lect37.pdfx*

-rw-r--r—— 1 hilfingr lisp 79932 Apr 27 11:21 lect37.pdf

-rw-r—-r—— 1 hilfingr lisp 66021 Apr 27 11:21 lect37.pdf.gz # Roughly 83 size
$ gunzip < lect37.pic.in.gz > lect37.pic.in.ungzip # Uncompress

$ diff lect37.pic.in lect37.pic.in.ungzip

$ # No difference from original (lossless)

$ gzip < lect37.pic.in.gz > lect37.pic.in.gz.gz

$ 1s -1 lect37.pic*gz

-rw-r--r-— 1 hilfingr lisp 5529 Apr 25 11:35 lect37.pic.in.gz

-rw-r——r—— 1 hilfingr lisp 5552 Apr 27 11:31 lect37.pic.in.gz.gz

$ # Compressing twice doesn’t help.

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 5

Compression and Decompression

e A compression algorithm converts a stream of symbols into another,

smaller stream.

e It is called lossless if the algorithm is invertible (no information

lost).
e A common symbol is the bit:

‘ 00110000001100010011001000110011

\ 4

‘ 0000000100100011 —> Decompression —>

Compression

—> 0000000100100011 ‘

00110000001100010011001000110011 ‘

e Here, we simply replaced the 8-bit ASCII bit sequences for digits
(where, for example, the single character ‘0" is encoded as 0x30=0b00110000)

with 4-bit (binary-coded decimal).

e Call these 4-bit sequences codewords, which we associate with the
symbols in the original, uncompressed text.

e Can do better than 50% compression with English text.

Last modified: Wed Apr 27 11:58:18 2022

CS61B: Lecture #39 6

Example: Morse Code

A © Il U o6 mm
B mmeeoo V o0 0 mm
CEmommEe W 0mmmm
D mmee X mEE e e mm
E o a K3 B
F oomme Z B e e
: . 2 B K
e Compact, simple to transmit. H e0®®
e Actually use three symbols: I oo O NEN EEN NN EEN E=
dih, dah, and pause. J O mmmmmmm | 6mmmmmm——

K mm o mm 2 X3 R N

Pauses go between codewords. L ommee PO —
M I 4 o000
N mmeo 5 00000
O I =E =m N K XN X
P o mm mm o 7 EEEEOO0O
Q EEEEONE § INEEEeo
R oemme 2 1 §F §F K)
S 000
T

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 7

Prefix Free Codes

e Morse code needs pauses between codewords to prevent ambiguities.

e Otherwise,

could be DEATH, BABE, or BATH.

e The problem is that Morse code allows many codewords to be prefixes
of other ones, so that it's difficult to know when you have come to
the end of one.

e Alternative is to devise prefix-free codes, in which no codeword is
a prefix of another.

e Then one always knows when a codeword ends.

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 8

Prefix-Free Examples

Encoding A Encoding B
space 1 space 111
E 01 E 010
T 001 T 1000
A 0001 A 1010
O 00001 O 1011
I 000001 I 1100

e For example, "T ATE" is unambiguously

0000011000100101 in Encoding A, or
110011110101000010 in Encoding B.

e What data structures might you use to...
Encode? Decode?

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 9

Prefix-Free Examples

Encoding A Encoding B
space 1 space 111
E 01 E 010
T 001 T 1000
A 0001 A 1010
O 00001 O 1011
I 000001 I 1100

e For example, "T ATE" is unambiguously

0000011000100101 in Encoding A, or
110011110101000010 in Encoding B.

e What data structures might you use to...
Encode? Ans: HashMap or array Decode?

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 10

Prefix-Free Examples

Encoding A

space

1

Encoding B

E

01

space

111

001

E

010

0001

1000

00001

1010

Hlo|> |+

000001

1011

H O[> |

1100

e For example, "T ATE" is unambiguously

0000011000100101 in Encoding A, or
110011110101000010 in Encoding B.

e What data structures might you use to...

Encode? Ans: HashMap or array Decode? Ans: Trie

Last modified: Wed Apr 27 11:58:18 2022

CS61B: Lecture #39 11

Shannon-Fano Coding

Symbol | Frequency | Encoding

&= 0.35

s 0.17 @@J LN

v 0.17

NP 0.16
V 0.15

e Count frequencies of all characters in text to be compressed.

e Break grouped characters into two groups of roughly equal frequency.
e Encode left group with leading O, right group with leading 1.

e Repeat until all groups are of size 1.

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 12

Shannon-Fano Coding

0 1

S O

Symbol | Frequency | Encoding
= 0.35 0...
I's 0.17 0...
v 0.17 1...
NP 0.16 1...
D 0.15 1.,

e Count frequencies of all characters in text to be compressed.

e Break grouped characters into two groups of roughly equal frequency.

e Encode left group with leading O, right group with leading 1.

e Repeat until all groups are of size 1.

Last modified: Wed Apr 27 11:58:18 2022

CS61B: Lecture #39 13

Shannon-Fano Coding

Symbol | Frequency | Encoding
=3 0.35 00 0
I's 0.17 01 1
v 0.17 1 :
I 0.16 1... 5| | v LI
A\Y 0.15 1...

e Count frequencies of all characters in text to be compressed.

e Break grouped characters into two groups of roughly equal frequency.
e Encode left group with leading O, right group with leading 1.

e Repeat until all groups are of size 1.

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 14

Shannon-Fano Coding

Symbol | Frequency | Encoding
= 0.35 00
I's 0.17 01
v 0.17 10
NP 0.16 11. ..
D 0.15 11...

e Count frequencies of all characters in text to be compressed.

e Break grouped characters into two groups of roughly equal frequency.

e Encode left group with leading O, right group with leading 1.

e Repeat until all groups are of size 1.

Last modified: Wed Apr 27 11:58:18 2022

CS61B: Lecture #39 15

Shannon-Fano Coding

Symbol | Frequency | Encoding
I 0.35 00
I's 0.17 01
v 0.17 10
<L 0.16 110
A\Y 0.15 111

&=

=

/

€

e Count frequencies of all characters in text to be compressed.

e Break grouped characters into two groups of roughly equal frequency.

e Encode left group with leading O, right group with leading 1.

e Repeat until all groups are of size 1.

Last modified: Wed Apr 27 11:58:18 2022

CS61B: Lecture #39 16

Can We Do Better?

e We'll say an encoding of symbols to codewords that are bitstrings
is optimal for a particular text if it encodes the text in the fewest
bits.

e Shannon-Fano coding is good, but not optimal.

e The optimal solution was found by an MIT graduate student, David
Huffman, in a class taught by Fano. The students were given the
choice of taking the final or solving this problem (i.e., finding the
encoding and a proof of optimality).

e The result is called Huffman coding.

e That's right: Fano assigned a problem he hadn't been able to solve.
Professors do that occasionally.

e See also this article.

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 17

https://www.google.com/url?q=http://www.huffmancoding.com/my-uncle/scientific-american&sa=D&ust=1588058638808000&usg=AFQjCNEMsHI2cxxuHcqgxstnw8GHCuWylw

Huffman Coding

0.31 0.34 0.31

o/ \ o/\ o/
CIREIRRVARN AN = k5 Y| I N = 5| v L N
0.35 0.17 0.17 0.16 0.15 0.35 0.17 0.17 0.35

e Put each symbol in a hode labeled with the symbol's relative frequency
(as before).

e Repeat the following until there is just one node:

- Combine the two nodes with smallest frequencies as children of a
new single node whose frequency is the sum of those of the two
nodes being combined.

- Let the edge to the left child be labeled ‘0" and to the right be
labeled 'T".

e The resulting tree shows the encoding for each symbol: concatenate
the edge labels on the path from the root to the symbol.

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 18

0.34

0.31

o) 1 0

1

SAILREARRAR

0.35

Huffman Coding

| ob| V| [D] S

0.65

0.34

0

1

0 g

o)

1

0.35

SARLONLARRARL

e Put each symbol in a hode labeled with the symbol's relative frequency

(as before).

e Repeat the following until there is just one node:

- Combine the two nodes with smallest frequencies as children of a
new single node whose frequency is the sum of those of the two
nodes being combined.

- Let the edge to the left child be labeled ‘0" and to the right be

labeled '1’

e The resulting tree shows the encoding for each symbol: concatenate
the edge labels on the path from the root to the symbol.

Last modified: Wed Apr 27 11:58:18 2022

CS61B: Lecture #39 19

Comparison

Symbol | Frequency | Shannon-Fano | Huffman
6= 0.35 00 0
= 0.17 01 100
v 0.17 10 101
NP 0.16 110 110
A\Y 0.15 111 111

For this case, Shannon-Fano coding takes a weighted average of 2.31

bits per symbol, while Huf fman coding takes 2.3.

Last modified: Wed Apr 27 11:58:18 2022

CS61B: Lecture #39 20

LZW Coding

e So far, we have used systems with one codeword per symbol.
e To get better compression, must encoded multiple symbols per codeword.
e This will allow us to code strings such as

bbb
aba
abcdabcdeabcdefabcdefgabcdefghabcdefghiabcd

(each 43 characters long) in space that can be less than
43 x weighted average symbol length.

e In LZW coding, we create new codewords as we go along, each
corresponding to substrings of the text:
- Start with a trivial mapping of codewords to single symbols.

- After outputting a codeword that matches the longest possible
prefix, X, of the remaining input, add a new codeword Y that maps
to the substring X followed by the next input symbol.

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 21

Example of LZW encoding

e Start with a trivial mapping of codewords to single symbols.

e After outputting a codeword that matches the longest possible prefix,
X, of the remaining input, add a new codeword Y that maps to the
substring X followed by the next input symbol.

Consider the following text as an example:
B="aababcabcdabcdeabcdefabcdefgabcdefgh"

We'll compute C(B), the encoding of B. Our codewords will consist of
8-bit ASCII codes (0x00-0x7f).

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 22

LZW Step O: Initial state

B = [aJababcabcdabcdeabcdefabcdefgabcedefgh

Code String
0x61 a
0x62 b
0x63 c
O0x7e -
Ox7f

C(B) =

Last modified: Wed Apr 27 11:58:18 2022

CS61B: Lecture #39 23

LZW Step 1

B = [aJababcabcdabcdeabcdefabcdefgabcedefgh

e Best prefix match in the table is 'a’, so output 0x61,

e And add [ala to the table with a new code.

Code

String

0x61

a

0x62

b

0x63

C

0x7e

Ox7f

0x80

aa

Last modified: Wed Apr 27 11:58:18 2022

C(B) = Ox61

CS61B: Lecture #39 24

B = dlalbabcabcdabcdeabcdefabcdefgabedefgh

LZW Step 2

e Best prefix match in the table for remaining input is still 'd’, so

output Ox61,
e And add [aDb to the table with a new code.

Code

String

0x61

a

0x62

b

0x63

C

0x7e

Ox7f

0x80

aa

0x81

ab

Last modified: Wed Apr 27 11:58:18 2022

C(B) = Ox6161

CS61B: Lecture #39 25

LZW Step 3

B = aablabcabcdabcdeabcdefabcdefgabedefgh

e Best prefix match in the table for remaining input is 'b’, so output
Ox62,

e And add [bla to the table with a new code.

Code

String

0x61

a

0x62

b

0x63

C

Ox7e

Ox7f

0x80

aa

0x81

ab

0x82

ba

Last modified: Wed Apr 27 11:58:18 2022

C(B) = Ox616162

CS61B: Lecture #39 26

LZW Step 4

B - abcabcdabcdeabcdefabcdefgabedefgh

e Best prefix match in the table for remaining input is now ‘ab’, so
output 0x81 (half as many bits as ‘ab’).

e And add |ablc to the table with a new code.

Code String

0x61 a

0x62 b

0x63 c

R E C(B) = 0x61616281
0x7f

0x80 aa

0x81 ab

0x82 ba

0x83 abc

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 27

B =

LZW Step 5

'clabcdabcdeabcedefabcdefgabedefgh

e Best prefix match in the table for remaining input is now 'c’, so
output Ox63

e And add [cla to the table with a new code.

Code String
0x61 a
0x62 b
0x63 c
0x7e -
0x7f
0x80 aa
0x81 ab
0x82 ba
0x83 abc
0x84 ca

Last modified: Wed Apr 27 11:58:18 2022

C(B) = 0x6161628163

CS61B: Lecture #39 28

B =

LZW Step 6

abcdabcdeabcedefabcdefgabedefgh

e Best prefix match in the table for remaining input is now ???, so
output ???

e And add ??? to the table with a new code.

Code String
0x61 a
0x62 b
0x63 C
0x7e -
0x7f
0x80 aa
0x81 ab
0x82 ba
0x83 abc
0x84 ca
0x85 777

Last modified: Wed Apr 27 11:58:18 2022

C(B) = 0x61616281637?

CS61B: Lecture #39 29

LZW Step 6

B - abcdabcdeabcdefabedefgabedefgh

e Best prefix match in the table for remaining input is now ‘abc’, so
output Ox83

e And add |abcid to the table with a new code.

Code String
0x61 a
0x62 b
0x63 C
OxT7e -
oxt | C(B) = 0x616162816383
0x80 aa
0x81 ab
0x82 ba
0x83 abc
0x84 ca
0x85 abcd

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 30

LZW Step 7

B - diabcdeabcdefabcdefgabcdefgh

e Best prefix match in the table for remaining input is now ‘d’, so
output Ox64

e And add 'da’ to the table with a new code.

Code String
0x61 a
0x62 b
0x63 C
0x7e -
it C(B) = 0x61616281638364
0x80 aa
0x81 ab
0x82 ba
0x83 abc
0x84 ca
0x85 abcd
0x86 da

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 31

B =

d

LZW Step 7

abcdeabcdefabcdefgabcedefgh

e Best prefix match in the table for remaining input is now ‘d’, so
output Ox64

e And add 'da’ to the table with a new code.

Code

String

0x61

a

0x62

b

0x63

C

C(B) = Ox61616281638364

Ox7e

Ox7f

- What's next?

0x80

aa

- What is the complete encoding? (When reviewing,

0x81

ab

0x82

ba

try to figure it out before looking at the next slide.)

0x83

abc

0x84

ca

0x85

abcd

0x86

da

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 32

LZW Final State

B =
Code String
0x61 a
0x62 b
0x63 c Code String

0x87 abcde

O0x7e ~ 0x88 ea
Ox7f 0x89 abcdef
0x80 aa 0x8a fa
0x81 ab 0x8b abcdefg
0x82 ba 0x8c ga
0x83 abc 0x8d abcdefgh
0x84 ca
0x85 abcd
0x86 da

To think

(200 bits)

C(B) = 0x616162316333643565
6639673068
(120 bits)

about: How might you represent this table to allow easily
finding the longest prefix at each step?

Last modified: Wed Apr 27 11:58:18 2022

CS61B: Lecture #39 33

Decompression

e Because each different input creates a different table, it would
seem that we need to provide the generated table in order to decode
a message.

e Interestingly, though, we don't!

e Suppose that, starting with the same initial table we did before,
with codes 0x00-Ox7f already assigned, we're given

C(B) = 0x616162816383
and wish to find B.

e We can see it starts with aab. What's next?

Code String
0x61 a
0x62 b
0x63 c
0x7e -
0x7f

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 34

Reconstructing the Coding Table (I)

e Idea is to reconstruct the table as we process each codeword in
C(B).

e Let S(X) mean "the symbols encoded by codeword X," and let Y}
mean character k of string Y.

e For each codeword, X, in C'(B), add S(X) to our result.

e Whenever we decoded two consecutive codewords, X; and X,, add a
new codeword that maps to S(X;) + S(X1)o

e Thus, we recapitulate a step in the compression operation that created
C(B) in the first place.

e Since we go from left to right, the table will (almost) always already
contain the mapping we need for the next codeword.

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 35

LZW Decompression, Step 1

C(B) = 0x61/616281638364
e S(0x61) is 'a’ in the table, so add it to B.

e Don't have a previous codeword yet, so don't add anything to the
table.

Code String

0x61 a

0x62 b

0x63 c B=-a
0x7e -

0x7f

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 36

LZW Decompression, Step 2

C(B) = 0x61/61/6281638364
e S(0x61) is 'a’ in the table, so add it to B.

e We have two codewords—S(0x61)='a’ twice—so add 'aa’ to the table
as a hew codeword

Code String

0x61 a

0x62 b

0x63 C

B=aa

0x7e -

0x7f

0x80 aa

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 37

LZW Decompression, Step 3

C(B) = 0x6161[62/81638364

e S5(0x62) is 'b' in the table, so add it to B.

e We have two codewords—S(0x61)='a’ and S(0x62)="b'—so add 'ab’ to
the table as a new codeword.

Code String

0x61 a

0x62 b

0x63 C

B=aab

0x7e -

0x7f

0x80 aa

0x81 ab

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 38

LZW Decompression, Step 4

C(B) = 0x 811638364

e S(0x81) is 'ab’ in the table, so add it to B.

e We have two codewords—S(0x62)='b’' and S(0x81)='ab’'—so add 'ba’ to
the table as a new codeword.

Code String

0x61 a

0x62 b

0x63 C

e B = aabab
0x7f

0x80 aa

0x81 ab

0x82 ba

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 39

LZW Decompression, Step 5

C(B) = 0x
e S5(0x63) is 'c’ in the table, so add it to B.

e We have two codewords—S(0x81)='ab’ and S(0x63)="c'—so add 'abc’
to the table as a new codeword.

638364

Code String

0x61 a

0x62 b

0x63 C

Ox7e |~ B = aababc
0x7f

0x80 aa

0x81 ab

0x82 ba

0x83 abc

Last modified: Wed Apr 27 11:58:18 2022

CS61B: Lecture #39 40

LZW Decompression, Step 6

C(B) = 0x 8364
e S5(0x83) is ??? in the table, so add it to B.

e We have two codewords—S(???)=??? and S(???)=???—so add ??? to
the table as a new codeword.

Last modified: Wed Apr 27 11:58:18 2022

Code String

0x61 a

0x62 b

0x63 C

T B = aababc???
0x80 aa

0x81 ab

0x82 ba

0x83 abc

7 Farale

CS61B: Lecture #39 41

C(B) = 0x

e 5(0x83) is 'abc’ in the table, so add it to B.
e We have two codewords—S(0x63)="c' and S(0x83)='abc'—so add 'ca’

33

LZW Decompression, Step 6

64

to the table as a new codeword.

Code String
0x61 a
0x62 b
0x63 C
0x7e -
0x7f
0x80 aa
0x81 ab
0x82 ba
0x83 abc
0x84 ca

Last modified: Wed Apr 27 11:58:18 2022

B = aababcabc

CS61B: Lecture #39 42

C(B) = 0x

e S(0x64) is 'd' in the table, so add it to B.
e We have two codewords—S(0x83)='abc’' and S(0x64)='d'—so add '‘abcd’

LZW Decompression, Step 7

64

to the table as a new codeword.

Code String
0x61 a
0x62 b
0x63 C
0x7e -
0x7f
0x80 aa
0x81 ab
0x82 ba
0x83 abc
0x84 ca
0x85 abcd

Last modified: Wed Apr 27 11:58:18 2022

B = aababcabcd

CS61B: Lecture #39 43

Reconstructing the Coding Table (IT)

e In a previous slide, I said "...the table will (almost) always already
contain the mapping we need..."

e Unfortunately, there are cases where it doesn't.
e Consider the string B="cdcdcdc’ as an example.

e After we encode it, we end up with

Code String

0x61 a

0x62 b

0x63 c

C(B) = Ox63648082

0x7e -

0x7f

0x80 cd

0x81 dc

0x82 cdc

e But decoding causes trouble...

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 44

Tricky Decompression, Step 1

C(B) = 0x[63/648082
e S5(0x63) is 'c’ in the table, so add it to B.

e Don't have a previous codeword yet, so don't add anything to the
table.

Code String

0x61 a

0x62 b

0x63 c B=c¢
0x7e -

0x7f

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 45

Tricky Decompression, Step 2

C(B) = 0x63[64/8082

e S(0x64) is 'd' in the table, so add it to B.

e We have two codewords—S(0x63)='c' and S(0x64)='d'—so add 'cd' to
the table as a new codeword

Code String

0x61 a

0x62 b

0x63 C

B=cd

0x7e -

Ox7f

0x80 cd

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 46

Tricky Decompression, Step 3

C(B) = 0x 80182
e 5(0x80) is 'cd' in the table, so add it to B.

e We have two codewords—S(0x64)='d' and S(0x80)="cd'—so add 'dc’ to
the table as a new codeword

Code String

0x61 a

0x62 b

0x63 C

B = cdcd

0x7e -

0x7f

0x80 cd

0x81 dc

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 47

C(B) = 0x

Tricky Decompression, Step 4

32

e Oops! S(0x82) is not yet in the table. What now?

Code

String

0x61

a

0x62

b

0x63

C

0x7e

Ox7f

0x80

cd

0x81

dc

0x82

707

B = cdcd???

e Problem is that we could look ahead while coding, but can only look
behind when decoding.

e So must figure out what 0x82 is going to be by looking back.

Last modified: Wed Apr 27 11:58:18 2022

CS61B: Lecture #39 48

Tricky Decompression, Step 4 (Second Try)

C(B) = 0x

32

e 5(0x82)=7 (to be figured out).
e Previously decoded S(0x80)="cd" and now have S(0x82)=7, so will

add "cdZ," to the table as S(0x82).

e So Z starts with S(0x80) and therefore Z;, must be 'c'l

e Thus S(0x82) = S(0x80)+~, = 'cdc'.

Code

String

0x61

a

0x62

b

0x63

C

0x7e

~

Ox7f

0x80

cd

0x81

dc

0x82

cdc

Last modified: Wed Apr 27 11:58:18 2022

B = cdcdcdc

CS61B: Lecture #39 49

LZW Algorithm

e LZW is named for its inventors: Lempel, Ziv, and Welch.

e Was widely used at one time, but because of patent issues became
rather unpopular (especially among open-source folks).

e The patents expired in 2003 and 2004.

e Now found in the .gif files, some PDF files, the BSD Unix compress
utility and elsewhere.

e There are numerous other (and better) algorithms (such as those in
gzip and bzip2).

e The presentation here is considerably simplified.

- We used fixed-length (8-bit) codewords, but the full algorithm
produces variable-length codewords using (I) Huffman coding
(compressing the compression).

- The full algorithm clears the table from time to time fo get rid
of little-used codewords.

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 50

Some Thoughts

e Compressing a compressed text doesn't result in much compression.
e Why must it be impossible to keep compressing a text?

e A program that takes no input and produces an output can be thought
of as an encodings of that output.

e Leading to the following question: Given a bitstream, what is the
length of the shortest program that can produce it?

e For any specific bitstream, there is a specific answer!

e This is a deep concept, known as Kolmogorov Complexity.

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 51

https://www.google.com/url?q=http://en.wikipedia.org/wiki/Kolmogorov_complexity&sa=D&ust=1588185388277000&usg=AFQjCNH81RFZvcCnRIuUekrslD5EbctbwQ

Some Thoughts

e Compressing a compressed text doesn't result in much compression.
e Why must it be impossible to keep compressing a text?

e Otherwise you'd be able to compress any number of different messages
to 1 bit!

e A program that takes no input and produces an output can be thought
of as an encodings of that output.

e Leading to the following question: Given a bitstream, what is the
length of the shortest program that can produce it?

e For any specific bitstream, there is a specific answer!

e This is a deep concept, known as Kolmogorov Complexity.

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 52

https://www.google.com/url?q=http://en.wikipedia.org/wiki/Kolmogorov_complexity&sa=D&ust=1588185388277000&usg=AFQjCNH81RFZvcCnRIuUekrslD5EbctbwQ

More Thoughts

e It's actually weird that one can compress much at all.

e Consider a 1000-character ASCII text (8000 bits), and suppose we
manage to compress it by 50%.

e There are 25" distinct messages in 8000 bits, but only 2" possible
messages in 4000 bits.

e That is, no matter what one's scheme, one can encode only 274 of
the possible 8000-bit messsages by 50%! Yet we do it all the time.

e Reason: Our texts have a great deal of redundancy (aka low information
entropy).

e Texts with high entropy—such as random bits, previously compressed
texts, or encrypted texts—are nearly incompressible.

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 53

Git

e Git Actually uses a different scheme from LZW for compression: a
combination of LZ77 and Huffman coding.

e LZ77 is kind of like delta compression, but within the same text.

e Convert a text such as
One Mississippi, two Mississippi
into something like
One Mississippi, two <11,7>

where the <11,7> is intended to mean "the next 11 characters come
from the text that ends 7 characters before this point.”

e We add new symbols to the alphabet to represent these (length,
distance) inclusions.

e When done, Huffman encode the result.

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 54

Lossy Compression

e For some applications, like compressing video and audio streams, it
really isn't necessary to be able to reproduce the exact stream.

e We can therefore get more compression by throwing away some
information.

e Reason: there is a limit to what human senses respond to.
e For example, we don't hear high frequencies, or see tiny color variations.

e Therefore, formats like JPEG, MP3, or MP4 use lossy compression
and reconstruct output that is (hopefully) imperceptibly different
from the original at large savings in size and bandwidth.,

e You can see more of this in EE120 and other courses.

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 55

Wrapping Up
o Lossless compression saves space (and bandwidth) by exploiting redundancy

in data.

e Huffman and Shannon-Fano coding represent individual symbols of
the input with shorter codewords.

e LZW and similar codes represents multiple symbols with shorter
codewords.

e Both adapt their codewords to the text being compressed.

e Lossy compression both uses redundancy and exploits the fact that
certain consumers of compressed data (like humans) can't really use
all the information that could be encoded.

Last modified: Wed Apr 27 11:58:18 2022 CS61B: Lecture #39 56

	Lecture #39: Compression
	Compression and Git
	Delta Compression
	Delta Compression (II)
	Two Unix Compression Programs
	Compression and Decompression
	Example: Morse Code
	Prefix Free Codes
	Prefix-Free Examples
	Shannon-Fano Coding
	Can We Do Better?
	Huffman Coding
	Comparison
	LZW Coding
	Example of LZW encoding
	LZW Step 0: Initial state
	LZW Step 1
	LZW Step 2
	LZW Step 3
	LZW Step 4
	LZW Step 5
	LZW Step 6
	LZW Step 7
	LZW Final State
	Decompression
	Reconstructing the Coding Table (I)
	LZW Decompression, Step 1
	LZW Decompression, Step 2
	LZW Decompression, Step 3
	LZW Decompression, Step 4
	LZW Decompression, Step 5
	LZW Decompression, Step 6
	LZW Decompression, Step 7
	Reconstructing the Coding Table (II)
	Tricky Decompression, Step 1
	Tricky Decompression, Step 2
	Tricky Decompression, Step 3
	Tricky Decompression, Step 4
	Tricky Decompression, Step 4 (Second Try)
	LZW Algorithm
	Some Thoughts
	More Thoughts
	Git
	Lossy Compression
	Wrapping Up

