
CS61C Project 3: Verilog MIPS Processor

Due Wednesday, November 24th, 11:59pm

November 21, 2004

Abstract

This project will test your understanding of Verilog and the implementation of

a single cycle CPU. You will be implementing a simple processor that is capable of

simulating a subset of real MIPS instructions. This is an individual project not to

be done in partnership. All work handed in must be your own and not result from

collaboration with others. Reading: Sections 5.1 through 5.3 and Appendix C.2 in

P&H.

1 Introduction

In this project you implement in Verilog and simulate a simple MIPS processor. You will
build the datapath from a library of predesigned blocks and the controller from primitive
gates. Your implementation will be done in structural Verilog. That is, it will consist only
of modules that instantiate logic gates and the modules we have provided1. You are not
allowed to use any behavioral constructs like conditionals, loops, or assignment statements
except in the testbench.

The motivation behind this project is to help you understand the detailed operation of
processors. Processor implementations are complex, even the simple MIPS; a good under-
standing of their operation comes only after the experience you will gain by implementing
and simulating a processor for yourself.

This project is based on the single cycle processor discussed in lecture and discussion
section. This implementation is similar to the one discussed in section 5 of P&H but has
support for more instructions. The only changes made to the basic datapath discussed in
class is the addition of support for the jump instruction, otherwise the datapath will be the
same.

2 Design Details

Your job is to implement the control and datapath for a simple MIPS processor. The
datapath will be created by wiring together a number of predefined behavioral modules that

1The modules can be found at http://inst.eecs.berkeley.edu/~cs61c/hw/proj3/blocks.v or on the

servers at ~cs61c/hw/proj3/blocks.v

1



you will be given. The control logic must be implemented using structural Verilog. No

behavioral Verilog is allowed in the cpu.v file!

The processor you will implement must support the following subset of MIPS instructions:

or, ori, and, andi, beq, sub, add, addi, j, slt, lw, sw, halt

All of the instructions (with the exception of halt) should be implemented exactly as they
are specified on the green sheet in P&H. This means that the opcodes, function codes, and
RTL descriptions for each instruction must be implemented correctly. The halt instruction
is defined by the opcode 0x3f (opcode field filled with 1’s) and should simply set the ”halt”
output from the processor.

Your design should follow the basic schematic discussed in lecture and found in figures
1 and 2. The only datapath and control structures not already in the diagram are the
ones necessary to implement the jump and halt instructions (hint: jump should only require
changes to the instruction fetch portion and the halt shouldn’t require anything new on the
datapath).

Figure 1: Datapath for Single Cycle MIPS Processor

3 Project Files

To complete this task you will be given the following files:

2



Figure 2: Instruction Fetch Unit

• cpu.v - Skeleton file for the CPU implementation. Do not change the interface to the
module or you will break our ability to test your project and you will recieve no credit.

• testbench.v - Basic behavioral testbench. This instantiates the CPU and provides
the clock and initial reset signal. This also generates the dump signal which will cause
the internal state to be dumped at the conclusion of the simulation. You do not need
to change this, but you may if it will aid in your testing. We will be using our own
copy of the testbench to test your submissions, so make sure it works with the master
copy (located in ~cs61c/hw/proj3) before submitting.

• blocks.v - The pre-defined behavioral Verilog blocks you will use to create your dat-
apath. Again, we will be testing with the master copy of this file, so do not make any
changes you rely upon and always test against the master copy before submission.

• Makefile - Simple Makefile to both compile the CPU, run the provided tests, and
submit the project. Read the comments in the Makefile to see all of the options.

• tests - A directory of predefined tests and some scripts to create new tests and run
the CPU. These are described in more detail in a following section.

To get these files you can download either a tarball or a zip (for you Windows folks) of
the source code. This is available at http://inst.eecs.berkeley.edu/~cs61c/hw/proj3/

3



proj3.tar.gz or http://inst.eecs.berkeley.edu/~cs61c/hw/proj3/proj3.zip. The
easiest way to get this on a Unix/Linux/OSX box is to do:

wget http://inst.eecs.berkeley.edu/~cs61c/hw/proj3/proj3.tar.gz

gunzip < proj3.tar.gz | tar -xvf -

Which will create a directory ”proj3” with all of the source code. On Windows just down-
load the .zip file and unzip. We highly suggest you do your work on one of the instructional
Unix machines, as it will make running/debugging/ect. much easier.

4 Project Modules

As mentioned above, we will be giving you behavioral models of all the basic elements needed
to create your datapath. All of your logic to wire the datapath and control signals must be
done in structural Verilog. You may create your own modules within ”cpu.v” but none of
them can use behavioral Verilog. Additionally, you may not change the interface to the CPU
module and you cannot rely on changes to the testbench or behavioral blocks (you can add
debugging statements, but do not add any functionality).

The behavioral modules found in ”blocks.v” all have descriptions of their functionality
preceding the actual modules. You do not need to understand how the modules are imple-
mented, just their semantics and interfaces. In particular you should note the semantics of
the DMP and RST signals:

• The mem module initializes data memory from the file named data.dat when RST is
asserted. It dumps memory to the file dump.dat when DMP is asserted.

• The ROM module initializes instruction memory (which is read-only) from the file
named text.dat when RST is asserted.

• The regFile module dumps registers to the console when DMP is asserted.

5 Project Tools

5.1 Building the CPU

We have provided you with a Makefile that will automatically build the processor and run
the tests. If you simply type make it will compile the processor simulation file cpu.vvp.
To automatically run the provided tests simply run make tests. Feel free to modify the
Makefile to add additional tests or any other functionality you like.

5.2 Provided Tests

The project comes with a set of predefined tests to help get you started with your test-
ing. These tests do not exercise all of the instructions implemented, nor do they test very

4



throughly. However, they do give a place to start testing and provide an example of how
to write your own tests. The tests can be found in at http://inst.eecs.berkeley.edu/

~cs61c/hw/proj3/tests on on the server in ~cs61c/hw/proj3/tests. Each test has four
files:

• .s file - This contains the assembly code for the test.

• .text file - This contains the binary encoding of the assembly code, one instruction per
line.

• .data file - This contains the initial state of the data memory. Each line holds a word
value specified in hexidecimal. The data will be located starting at address zero with
each new line taking the next word in memory.

• .dump file - A dump of the data memory after the program execution. This gives you
a way to compare the correct final state of the provided test programs against your
own.

5.3 Making Tests

You are encouraged to make your own tests, as the tests provided do not test all of the
instructions supported by the processor and do not test throughly. To make your own tests
you must create a MIPS assembly file that begins with the following lines:

.text

__start:

You can then use any of the MIPS instructions that are implemented by the processor.
To convert the assembly code into binary that can be read by the behavioral memory, you
need to run the make test.pl script2 which is included in the tests directory. This will
output a hexidecimal word, one per line, for each instruction in the program. The script will
also output the halt instruction as the final instruction.

You can use the script to output a .text file which will be loaded into the instruction
memory. Here is an example of how to run the script:

./make_test.pl my_test1.s > my_test1.text

In addition to the .text file you also need to create a .data file which holds the initial
state of the data memory. This file is simply a list of hexidecimal word values, one per line,
that represent any data you wish to have in memory when the program starts. You must
make this file by hand and it should have the same name as your .text file but with the
suffix .data. Using the example above, you would want to also create a file my test1.data

to go along with the program text.

2If you are running make test.pl at home you must have perl, expect, and SPIM installed.

5



5.4 Running Tests

The .text and .data files are automatically loaded by the behavioral Verilog modules we
have provided. To make this loading work correctly, we have provided you with a shell script
called trycpu3 which is located in the tests directory. The trycpu script takes the base
name of your pair of .text and .data files (i.e. if you had foo.text and foo.data you would
use ”foo”) renames them for use by the Verilog modules and then runs cpu.vvp to run
the simulation. When the simulation is over it will automatically diff the output of the run
against the .dump file to tell you if there are any differences. This script will work with any
new tests you create, but the diff function will not work unless you provide a .dump file that
you consider correct (you can create this by hand).

6 Project Submission

You will submit the file ”cpu.v” which contains your processor implementation. You do not
need to submit ”blocks.v” or ”testbench.v” as we will use the master copies. We encourage
you to modify the base testbench to suit your needs, but make sure your code works with
the master copies before submitting.

To make sure your code works with the master copies before submission you should run
make submittests which will compile your CPU with the master testbench and blocks
and then run all of your tests. You should do this sanity check before actually doing the
submission.

To actually submit your project simply type make submit which will run the submission
program. You should expect a sanity check reply from the autograder within an hour our
two to confirm the submission. Remember, the initial autograder does not
test all cases, it only provides a sanity check, you must do your
own tests to ensure correct operation.

Your submission is due by 11:59pm on November 24th. Any submissions after this
deadline will be considered late and will use a slip day. If there are problems with submission
or anything on our end that require a change to the deadline, you will be informed via the
course website and on the newsgroup.

7 Hints

The following are some hints that may help guide your design and implementation. As
always, check the project webpage and the newsgroup for questions and answers before
posting your own question.

1. From a debugging perspective, it is good to debug incrementally. You might want
to test your datapath with behavioral control signals before moving on to coding the
structural control (this is the hard part of the project).

3See the file trycpu.README for more information. Additionally, you can use the ”make tests” part of

the Makefile to automatically run a series of tests. See the Makefile for further information.

6



2. Test regressively. This means if you have some test that as you test and then add
logic you should make sure you rerun all your old tests to make sure you didn’t break
anything.

3. Think about corner cases. Even if your tests exercise all of the implemented instruc-
tions, rembember that things can interact in funny ways. Think about complex corner
cases that should be tested. Your implementation experience should help you to iden-
tify these cases.

4. When coding your control, remember that each individual bit of control signals can be
treated seperately.

5. Find commonality. Remember that you can create wires that represent whether a
complex condition is true or false. If you factor out these common cases it is easy to
combine them to create powerful logic that is easy to understand.

6. Go for clarity over performance. Verilog is notorious for having simple errors that
really give weird behavior. Always use the ”.” notation for module instantations and
make sure you get logic right before you attempt to minimize it. Simple, clear logic is
better than complicated, bleeding edge logic when you are implementing it by hand.

8 Extra for Experts

So you think you’re pretty good, huh? You did the project in under an hour without breaking
a sweat and you clamour for more? Well, give this a try. Determine what instructions would
be necessary to support the ABI (application binary interface) discussed in class and then
make your processor run the fibonacci program found at http://inst.eecs.berkeley.edu/
~cs61c/hw/proj3/fib.s.

7


