CS61C Fall 2014 Discussion 3
1. Translate the following C code into MIPS.

// Strcpy: addiu $t0, $0, O
// $sl1 -> char sl[] = “Hello!”; Loop: addu $tl, $sl1, $tO0 # sl[i]
// $s2 -> char *s2 = addu $t2, $s2, $t0 # s2[i]
// malloc (sizeof (char) *7); b $t3, 0($tl) # char is
int 1=0; sb $t3, 0(st2) # 1 byte!
do { addiu $t0, $t0, 1
s2[i] = sl[i]; addiu $t1, $t1, 1
i++; 1b Std, 0(stl)
} while(sl[i] != '\0"); bne $t4, $0, Loop
s2[1] = '"\O"'; Done: sb Std, 1(St2)
// Nth Fibonacci (n) :
// $s0 -> n, $sl -> fib beq $s0, $0, RetO
// $t0 -> i, S$tl -> 5 addiu s$t2, $0, 1
// Assume fib, i, j are these values beg $s0, $t2, Retl
int fib =1, 1 =1, j = 1; addiu $s0, $s0, -2
Loop: beq $s0, $0, RetF
if (n==0) return 0; addu $s1, $t0, $tl
else if (n==1) return 1; addiu $t0, $tl1, O
n -= 2; addiu $tl1, $sl1, O
while (n != 0) { addiu $s0, $s0, -1
fib = 1 + J; J Loop
j o= i; Ret0: addiu $v0, $0, O
i = fib; 3 Done
n--; Retl: addiu $v0, $0, 1
} 3 Done
return fib; RetF: addu $v0, $0, $sl
Done:
// Collatz conjecture Ll: addiu $t0, $0, 2
// $s0 -> n div $s0, $tO # puts (n%2) in $hi
unsigned n; mfhi $tO0 # sets $t0 = (n%2)
Ll: if (n % 2) goto L2; bne $t0, $0, L2
goto L3; j L3
L2: if (n == 1) goto L4; L2: addiu $t0, $0, 1
n=3%*n+ 1; beq $s0, S$t0, L4
goto L1; addiu $t0, $0, 3
L3: n =n > 1; mul $s0, $s0, $tO
goto L1; addiu $s0, $s0, 1
L4: return n; J L1
L3: srl $s0, $s0, 1
j 11

L4:

MIPS Addressing Modes

e We have several addressing modes to access memory (immediate not listed):

o Base displacement addressing: Adds an immediate to a register value to create a memory
address (used for Iw, Ib, sw, sb)

o PC-relative addressing: Uses the PC (actually the current PC plus four) and adds the I-value
of the instruction (multiplied by 4) to create an address (used by I-format branching instructions
like beq, bne)

o Pseudodirect addressing: Uses the upper four bits of the PC and concatenates a 26-bit value
from the instruction (with implicit 00 lowest bits) to make a 32-bit address (used by J-format
instructions)

o Register Addressing: Uses the value in a register as a memory address (jr)

2. You need to jump to an instruction that 2228 + 4 bytes higher than the current PC. How do you do
it? Assume you know the exact destination address at compile time. (Hint: you need multiple
instructions)

The jump instruction can only reach addresses that share the same upper 4 bits as the PC. A jump 2/28+4 bytes away
would require changing the fourth highest bit, so a jump instruction is not sufficient. We must manually load our 32 bit
address into a register and use jr.

lui $at {upper 16 bits of Foo}
ori Sat $Sat {lower 16 bits of Foo}
Jjr Sat

3. You now need to branch to an instruction 2217 + 4 bytes higher than the current PC, when $t0
equals 0. Assume that we’re not jumping to a new 2228 byte block. Write MIPS to do this.

The total range of a branch instruction is -2*17 + 4 — 2”17 bytes (a 16 bit signed integer that counts by words, with the
PC+4 rule). Thus, we cannot use a branch instruction to reach our goal, but by the problem’s assumption, we can use a
jump. Assuming we’re jumping to label Foo:

beg $t0 $0 DoJump

[...]
DodJump: j Foo

4. Given the following MIPS code (and instruction addresses), fill in the blank fields for the following
instructions (you’ll need your green sheet!):

0x002cff00: loop: addu $t0, $t0, $tO | 0| 81 8 | 8 | 0 | 0x21 |
0x002cff04: jal foo |3 Oxc0001 |
0x002cff08: bne $t0, $zero, loop | 51 8 | 0| -3 = 0xfffd |
0x00300004: foo: Jr $ra Sra=_0x002cff08

5. What instruction is 0x000082037?
Hex -> bin: 0000 0000 0000 0OOOO 1000 1010 0000 0011

0 opcode -> R-type: 000000 00000 00000 10001 01000 000011
sra $sl1 $0 8

