
MIPS Strikes Back: Imagination Technologies
(acquired MIPS Technologies in 2012) with the
aim to take on ARM announced Warrior I6400
core, based on MIPS64. Applications: Mobile,
home entertainment, automotive, networking...

Garcia, Lustig Fall 2014 © UCBCS61C L06 Introduction to MIPS: Data transfer and decisions ()

Instructor:
 Miki Lustig

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures
 Lecture 6 – Introduction to MIPS

Data Transfer & Decisions I

 2014-09-12

http://www.anandtech.com/show/8457/mips-strikes-back-64bit-warrior-i6400-architecture-arrives

CS61C L06 Introduction to MIPS: Data transfer and decisions () Garcia,Lustig Fall 2014 © UCB

Review

•In MIPS Assembly Language:
•Registers replace variables
•One Instruction (simple operation) per line
•Simpler is Better, Smaller is Faster

•New Instructions:
add, addi, sub

•New Registers:
C Variables: $s0 - $s7
Temporary Variables: $t0 - $t7
Zero: $zero

CS61C L06 Introduction to MIPS: Data transfer and decisions () Garcia,Lustig Fall 2014 © UCB

Assembly Operands: Memory

•C variables map onto registers; what about
large data structures like arrays?
•1 of 5 components of a computer:
memory contains such data structures
•But MIPS arithmetic instructions only operate
on registers, never directly on memory.
•Data transfer instructions transfer data
between registers and memory:

•Memory to register
•Register to memory

CS61C L06 Introduction to MIPS: Data transfer and decisions () Garcia,Lustig Fall 2014 © UCB

Anatomy: 5 components of any Computer

 Processor

Computer

Control
(“brain”)

Datapath
Registers

Memory Devices

Input

OutputLoad (from)

Store (to)

These are “data transfer” instructions…

Registers are in the datapath of the processor; if
operands are in memory, we must transfer them to
the processor to operate on them, and then transfer
back to memory when done.

CS61C L06 Introduction to MIPS: Data transfer and decisions () Garcia,Lustig Fall 2014 © UCB

Data Transfer: Memory to Reg (1/4)

•To transfer a word of data,
we need to specify two things:

•Register: specify this by number ($0 - $31) or
symbolic name ($s0,…,$t0,…)

•Memory address: more difficult
§Think of memory as a single one-dimensional array, so

we can address it simply by supplying a pointer to a
memory address.

§Other times, we want to be able to offset from this
pointer.

•Remember: “Load FROM memory”

CS61C L06 Introduction to MIPS: Data transfer and decisions () Garcia,Lustig Fall 2014 © UCB

Data Transfer: Memory to Reg (2/4)

•To specify a memory address to copy from,
specify two things:

•A register containing a pointer to memory
•A numerical offset (in bytes)

•The desired memory address is the sum of
these two values.
•Example: 8($t0)

•specifies the memory address pointed to by the
value in $t0, plus 8 bytes

CS61C L06 Introduction to MIPS: Data transfer and decisions () Garcia,Lustig Fall 2014 © UCB

Data Transfer: Memory to Reg (3/4)

•Load Instruction Syntax:
 1 2,3(4)
•where
 1) operation name
 2) register that will receive value
 3) numerical offset in bytes
 4) register containing pointer to memory

•MIPS Instruction Name:
•lw (meaning Load Word, so 32 bits or one word are
loaded at a time)

CS61C L06 Introduction to MIPS: Data transfer and decisions () Garcia,Lustig Fall 2014 © UCB

Data Transfer: Memory to Reg (4/4)

Example: lw $t0,12($s0)
 This instruction will take the pointer in $s0, add 12 bytes to

it, and then load the value from the memory pointed to by
this calculated sum into register $t0

•Notes:
• $s0 is called the base register
• 12 is called the offset
•offset is generally used in accessing elements of array or
structure: base reg points to beginning of array or structure
(note offset must be a constant known at assembly time)

Data flow

CS61C L06 Introduction to MIPS: Data transfer and decisions () Garcia,Lustig Fall 2014 © UCB

Data Transfer: Reg to Memory

•Also want to store from register into memory
•Store instruction syntax is identical to Load’s

•MIPS Instruction Name:
 sw (meaning Store Word, so 32 bits or one word is stored

at a time)

•Example: sw $t0,12($s0)
 This instruction will take the pointer in $s0, add 12 bytes to it,

and then store the value from register $t0 into that memory
address

•Remember: “Store INTO memory”

Data flow

CS61C L06 Introduction to MIPS: Data transfer and decisions () Garcia,Lustig Fall 2014 © UCB

Pointers v. Values

•Key Concept: A register can hold any 32-bit
value. That value can be a (signed) int, an
unsigned int, a pointer (memory addr), and so
on

•E.g., If you write: add $t2,$t1,$t0
then $t0 and $t1 better contain values that can be
added

•E.g., If you write: lw $t2,0($t0)
then $t0 better contain a pointer

•Don’t mix these up!

CS61C L06 Introduction to MIPS: Data transfer and decisions () Garcia,Lustig Fall 2014 © UCB

Addressing: Byte vs. Word

•Every word in memory has an address, similar to an index
in an array

•Early computers numbered words like C numbers elements
of an array:

•Memory[0], Memory[1], Memory[2], …

• Computers needed to access 8-bit bytes as
well as words (4 bytes/word)
• Today machines address memory as bytes,
(i.e., “Byte Addressed”) hence 32-bit (4 byte)
word addresses differ by 4
•Memory[0], Memory[4], Memory[8]

Called the “address” of a word

CS61C L06 Introduction to MIPS: Data transfer and decisions () Garcia,Lustig Fall 2014 © UCB

Compilation with Memory
•What offset in lw to select A[5] in C?
• 4x5=20 to select A[5]: byte v. word
•Compile by hand using registers:
 g = h + A[5];

• g: $s1, h: $s2, $s3: base address of A

•1st transfer from memory to register:
 lw! $t0,20($s3) # $t0 gets A[5]

•Add 20 to $s3 to select A[5], put into $t0

•Next add it to h and place in g
add $s1,$s2,$t0 # $s1 = h+A[5]

CS61C L06 Introduction to MIPS: Data transfer and decisions () Garcia,Lustig Fall 2014 © UCB

Notes about Memory

•Pitfall: Forgetting that sequential word
addresses in machines with byte addressing
do not differ by 1.

•Many an assembly language programmer has
toiled over errors made by assuming that the
address of the next word can be found by
incrementing the address in a register by 1 instead
of by the word size in bytes.

•Also, remember that for both lw and sw, the sum of
the base address and the offset must be
a multiple of 4 (to be word aligned)

•MIPS requires that all words start at byte
addresses that are multiples of 4 bytes

•Called Alignment: objects fall on address that is multiple of
their size

CS61C L06 Introduction to MIPS: Data transfer and decisions () Garcia,Lustig Fall 2014 © UCB

More Notes about Memory: Alignment

0, 4, 8, or Chex

Last hex digit
of address is:

1, 5, 9, or Dhex
2, 6, A, or Ehex
3, 7, B, or Fhex

 3 2 1
0 Aligned

Not
Aligned

3 2 1 0

CS61C L06 Introduction to MIPS: Data transfer and decisions () Garcia,Lustig Fall 2014 © UCB

Role of Registers vs. Memory
•What if more variables than registers?

•Compiler tries to keep most frequently used
variable in registers

•Less common variables in memory: spilling

•Why not keep all variables in memory?
•Smaller is faster:
registers are faster than memory

•Registers more versatile:
§MIPS arithmetic instructions can read 2, operate on

them, and write 1 per instruction
§MIPS data transfer only read or write 1 operand per

instruction, and no operation

CS61C L06 Introduction to MIPS: Data transfer and decisions () Garcia,Lustig Fall 2014 © UCB

So Far...

•All instructions so far only manipulate data…
we’ve built a calculator of sorts.
•In order to build a computer, we need ability
to make decisions…
•C (and MIPS) provide labels to support “goto”
jumps to places in code.

•C: Horrible style; MIPS: Necessary!

•Heads up: pull out some papers and pens,
you’ll do an in-class exercise!

CS61C L06 Introduction to MIPS: Data transfer and decisions () Garcia,Lustig Fall 2014 © UCB

C Decisions: if Statements

•2 kinds of if statements in C
if (condition) clause
if (condition) clause1 else clause2

•Rearrange 2nd if into following:
 if (condition) goto L1;

 clause2;
 goto L2;

 L1: clause1;
 L2:

•Not as elegant as if-else, but same meaning

CS61C L06 Introduction to MIPS: Data transfer and decisions () Garcia,Lustig Fall 2014 © UCB

MIPS Decision Instructions
•Decision instruction in MIPS:

beq register1, register2, L1
beq is “Branch if (registers are) equal”

Same meaning as (using C):
 if (register1==register2) goto L1

•Complementary MIPS decision instruction
bne register1, register2, L1
bne is “Branch if (registers are) not equal”

 Same meaning as (using C):
 if (register1!=register2) goto L1

•Called conditional branches

CS61C L06 Introduction to MIPS: Data transfer and decisions () Garcia,Lustig Fall 2014 © UCB

MIPS Goto Instruction
•In addition to conditional branches, MIPS has an
unconditional branch:
 ! j label

•Called a Jump Instruction: jump (or branch)
directly to the given label without needing to
satisfy any condition
•Same meaning as (using C): goto label
•Technically, it’s the same effect as:
beq $0,$0,label
since it always satisfies the condition.

CS61C L06 Introduction to MIPS: Data transfer and decisions () Garcia,Lustig Fall 2014 © UCB

Compiling C if into MIPS (1/2)
•Compile by hand
 if (i == j) f=g+h;
else f=g-h;

•Use this mapping:
 f: $s0
 g: $s1
 h: $s2
 i: $s3
 j: $s4

Exit

i == j?

f=g+h f=g-h

(false)
i != j

(true)
i == j

CS61C L06 Introduction to MIPS: Data transfer and decisions () Garcia,Lustig Fall 2014 © UCB

Compiling C if into MIPS (2/2)

•Final compiled MIPS code:

 beq $s3,$s4,True # branch i==j
 sub $s0,$s1,$s2 # f=g-h(false)
 j Fin # goto Fin
True: add $s0,$s1,$s2 # f=g+h (true)
Fin:

Note: Compiler automatically creates labels to handle decisions
(branches). Generally not found in HLL code.

•Compile by hand
 if (i == j) f=g+h;
else f=g-h;

Exit

i == j?

f=g+h f=g-h

(false)
i != j

(true)
i == j

CS61C L06 Introduction to MIPS: Data transfer and decisions () Garcia,Lustig Fall 2014 © UCB

Peer Instruction

We want to translate *x = *y into MIPS
(x, y ptrs stored in: $s0 $s1)
1: add $s0, $s1, zero
2: add $s1, $s0, zero
3: lw $s0, 0($s1)
4: lw $s1, 0($s0)
5: lw $t0, 0($s1)
6: sw $t0, 0($s0)
7: lw $s0, 0($t0)
8: sw $s1, 0($t0)

a) 1 or 2
b) 3 or 4
c) 5→6
d) 6→5
e) 7→8

CS61C L06 Introduction to MIPS: Data transfer and decisions () Garcia,Lustig Fall 2014 © UCB

“And in Conclusion…”

•Memory is byte-addressable, but lw and sw access one
word at a time.
•A pointer (used by lw and sw) is just a memory address, we
can add to it or subtract from it (using offset).
•A Decision allows us to decide what to execute at run-time
rather than compile-time.
•C Decisions are made using conditional statements within
if, while, do while, for.
•MIPS Decision making instructions are the conditional
branches: beq and bne.
•New Instructions:

lw, sw, beq, bne, j

