inst.eecs.berkeley.edu/~cs6lc

CS61C : Machine Structures

Lecture 20
Almost Thread Level Parallelism

Intel Xeon Phi

2 in N .

comPL
P3 4 SLoT Xeon Phi —

Ciick to learn more

intel.com/xeonphi

Review

* Flynn Taxonomy of Parallel Architectures

— SIMD: Single Instruction Multiple Data

— MIMD: Multiple Instruction Multiple Data

— SISD: Single Instruction Single Data

— MISD: Multiple Instruction Single Data (unused)
* Intel SSE SIMD Instructions

— One instruction fetch that operates on multiple
operands simultaneously

— 64/128 bit XMM registers
— (SSE = Streaming SIMD Extensions)

* Threads and Thread-level parallelism

Q €S61C L20 Thread Level Parallelism | (2)

Garcia, Lustig Fall 2014 © UCB

Intel SSE Intrinsics

* Intrinsics are C functions and procedures for putting
in assembly language, including SSE instructions

— With intrinsics, can program using these instructions
indirectly

— One-to-one correspondence between SSE instructions and
intrinsics

Q €S61C 120 Thread Level Parallelism I (3)

Garcia, Lustig Fall 2014 © UCB

Example SSE Intrinsics

Instrinsics: Corresponding SSE instructions:

* Vector data type:
_m128d

* Load and store operations:
_mm_load_pd
_mm_store_pd

MOVAPD/aligned, packed double
MOVAPD/aligned, packed double
_mm_loadu_pd MOVUPD/unaligned, packed double
_mm_storeu_pd MOVUPD/unaligned, packed double
* Load and broadcast across vector

_mm_loadl_pd MOVSD + shuffling/duplicating
* Arithmetic:
_mm_add_pd ADDPD/add, packed double

_mm_mul_pd

Q €S61C L20 Thread Level Parallelism | (4)

MULPD/multiple, packed double

Garcia, Lustig Fall 2014 © UCB

Example: 2 x 2 Matrix Multiply

Definition of Matrix Multiply:)

Ci,j = (AXB)i,j :kZ 1Ai,kx Bk,j

Aip By, C1aqAL1Braf+ A1,y C127A11B15%A 5B,
X =
A, By B, Cy17A21B1alt Ar By Cz,fAz,1B1,z+Az,zE‘z,z
1 0 1 3 € =1%1+0%2=1 Ci,=1%3+0%4=3

Cpy=0%1 + 1%2=2 C,,=0*3+1%4=4

M €S61C 120 Thread Level Parallelism I (5) Garcia, Lustig Fall 2014 © UCB

Example: 2 x 2 Matrix Multiply

* Using the XMM registers
— 64-bit/double precision/two doubles per XMM reg

Cl Cl 1 : C
| = : 2 Stored in memory in Column order
G, | C1,2 ! Czyz
A | A i Ay |
B1 | Bi,l i Bi,l |
B, | B, 1 B, |

Q €S61C L20 Thread Level Parallelism | (6)

Garcia, Lustig Fall 2014 © UCB

Example: 2 x 2 Matrix Multiply

* |nitialization

€S61C L20 Thread Level Parallelism | (7)

Garcia, Lustig Fall 2014 © UCB

Example: 2 x 2 Matrix Multiply

¢ |nitialization

C, | 0 1 0 |

C, | 0 1 0 |
=1

A | A ! Asa |

B, | By ! Biy |

B, | Bi, ! Bi, |

ﬂ €S61C L20 Thread Level Parallelism | (8)

_mm_load_pd: Load 2 doubles into XMM
reg, Stored in memory in Column order

_mm_load1_pd: SSE instruction that loads
a double word and stores it in the high and
low double words of the XMM register
(duplicates value in both halves of XMM)

Garcia, Lustig Fall 2014 © UCB

Example: 2 x 2 Matrix Multiply

¢ First iteration intermediate result

O

1

O

2

B,

| 0+A,,B,, i 0+A; 1By, |
| 0+A;,B,, i 0+A,,B,, |
1

| Arg i Ax |
| By, i Biy |
[B., P By, |

ﬂ €S61C 120 Thread Level Parallelism | (9)

cl=_mm_add_pd(c1,_mm_mul_pd(a,bl));
c2 =_mm_add_pd(c2,_mm_mul_pd(a,b2));
SSE instructions first do parallel multiplies
and then parallel adds in XMM registers

_mm_load_pd: Stored in memory in
Column order

_mm_load1_pd: SSE instruction that loads
a double word and stores it in the high and
low double words of the XMM register
(duplicates value in both halves of XMM)

Garcia, Lustig Fall 2014 © UCB

Example: 2 x 2 Matrix Multiply

¢ First iteration intermediate result

G | 0+A, 1B, i 0+A; 1By, |

C, | 0+A, ;B,, i 0+A, 1B, |
c1=2

A | Aia i Arp |

B, | Ba1 i By1 |

B, | B, i B, |

ﬂ €S61C 120 Thread Level Parallelism 1 (10)

cl=_mm_add_pd(c1,_mm_mul_pd(a,bl));
c2 =_mm_add_pd(c2,_mm_mul_pd(a,b2));
SSE instructions first do parallel multiplies
and then parallel adds in XMM registers

_mm_load_pd: Stored in memory in
Column order

_mm_load1_pd: SSE instruction that loads
a double word and stores it in the high and
low double words of the XMM register
(duplicates value in both halves of XMM)

Garcia, Lustig Fall 2014 © UCB

Example: 2 x 2 Matrix Multiply

¢ Second iteration intermediate result

G
G

A

B,

cl,i

CZ,l

|A1,1B1,1+A1,ZB2,1 i Az,lBl,1+Az,ZBz,1 |

|A1,1B1,Z+A1,ZB1,Z 1 A1B1o+A, 5B, , |

Cip G
2
| As, i Asn |
| B1 i By1 |
| B, i B, |

ﬂ €S61C 120 Thread Level Parallelism | (11)

cl=_mm_add_pd(c1,_mm_mul_pd(a,bl));
c2 =_mm_add_pd(c2,_mm_mul_pd(a,b2));
SSE instructions first do parallel multiplies
and then parallel adds in XMM registers

_mm_load_pd: Stored in memory in
Column order

_mm_load1_pd: SSE instruction that loads
a double word and stores it in the high and
low double words of the XMM register
(duplicates value in both halves of XMM)

Garcia, Lustig Fall 2014 © UCB

Example: 2 x 2 Matrix Multiply

Definition of Matrix Multiply:

2

Ci,j = (AXB)i,j :kZ lAi,kx Bk,j

w €S61C 120 Thread Level Parallelism 1 (12)

Ay By,
X =
A, B,1 B,,
1 0 1 3
X =
0 1 2 4

Cy13AL1By 1 ALoBy g C1,7A11B1 oA ,B, 5
C17A2,1B14f* AB;4 C27A1B1 %A, 58,5,
Cm1%140%2=1 C,,=1%3+0%4=3

C,=0%1 + 1¥2=2

C,,=0*3+1%4=4

Garcia, Lustig Fall 2014 © UCB

Example: 2 x 2 Matrix Multiply
(Part 1 of 2)

// Initialize A, B, C for example
(note column order!)

#include <stdio.h>
// header file for SSE compiler intrinsics /*A=

#include <emmintrin.h> 10
01
x
// NOTE: vector registers will be represented in /
comments as v =[a | b] A[0] = 1.0; A[1] = 0.0; A[2] =0.0; A[3]=1.0;

// where v1 is a variable of type __m128d and

a, b are doubles /*B= (note column order!)
’ 13
. . . 24
int main(void) { o

// allocate A,B,C aligned on 16-byte boundaries
double A[4] __attribute__ ((aligned (16)));

B[0] = 1.0; B[1] =2.0; B[2] =3.0; B[3] =4.0;

double B[4] __attribute__ ((aligned (16))); /*C= (note column order!)
double C[4] __attribute__ ((aligned (16))); 00

intlda =2; 00

inti=0; */

// declare several 128-bit vector variables C[0] = 0.0; C[1] = 0.0; C[2] =0.0; C[3] =0.0;

__m128d c1,c2,3,b1,b2;

Q €S61C 120 Thread Level Parallelism | (13)

Garcia, Lustig Fall 2014 © UCB

Example: 2 x 2 Matrix Multiply
(Part 2 of 2)

// used aligned loads to set /*cl=
//cl=[c_11|c_21] i=0:[c_ 11+a_11*b_11[c 21+a 21*b 11]
cl=_mm_load_pd(C+0*Ida); i=1:[c 11+a_21%b_21[c 21+a_22*b_21]
//c2=[c_12|c 22] /
€2=_mm_load_pd(C+1*lda); cl=_mm_add_pd(cl,_mm_mul_pd(a,bl));
/*e2=
i=0:[c_12+a_11%b_12 [¢ 22 +a_21%b_12]
i=1:[c_12+a_21*b_22 [c_22 +a_22*b_22]
Y/
c2=_mm_add_pd(c2,_mm_mul_pd(a,b2));

for (i=0;i<2;i++){
/*a=

i=0:[a_11[a_21]
i=1:[

a=_mm_load_pd(A+i*Ida); }

) 11 b_11] // store c1,c2 back into C for completion
[b_21]b_21] _mm_store_pd(C+0*Ida,c1);

‘s c2),
bl =_mm_load1_pd(B+i+0*Ida); —mm_store_pd(C+1*ida,c2);

2 'bz =_mm_load1_pd(B+i+1*Ida); }
€S61C L20 Thread Level Parallelism | (14)

// print C
printf("%g,%g\n%g,%g\n",C[0],C[2],C[1],C[3]);
return O;

Garcia, Lustig Fall 2014 © UCB

Inner loop from gcc -0 -S

L2: movapd (%rax,%rsi), %xmm1l //Load aligned A[i,i+1]->m1
movddup (%rdx), %xmmO0 //Load B[j], duplicate->m0
mulpd %xmm1, %xmm0 //Multiply m0*m1->m0
addpd %xmm0, %xmm3 //Add m0+m3->m3
movddup 16(%rdx), %xmmO //Load B[j+1], duplicate->mO
mulpd %xmm0, %xmm1 //Multiply m0*m1->m1
addpd %xmm1l, %xmm2 //Add m1+m2->m2
addq $16, %rax // rax+16 -> rax (i+=2)
addq S8, %rdx // rdx+8 -> rdx (j+=1)
cmpq $32, %rax // rax == 32?
jne L2 // jump to L2 if not equal
movapd %xmm3, (%rcx) //store aligned m3 into C[k,k+1]
movapd %xmm?2, (%rdi) //store aligned m2 into C[l,1+1]

Q €S61C 120 Thread Level Parallelism | (15)

Garcia, Lustig Fall 2014 © UCB

You Are Here!

Software Hardware

* Parallel Requests

Assigned to computer Warehouse

Scale
e.g., Search “Katz” Computer
Hdgrness
* Parallel Threads | o, clielism &
Assigned to core Achieve High .
e.g., Lookup, Ads Performance omputer
 Parallel Instructions Core w7 Core A
. N . - M
>1 instruction @ one time Memory -~ (Cache) Projé\ct 3
L . N
e.g., 5 pipelined instructions nput/Cutput Core \\
* Parallel Data ! Y
Functional

>1 data item @ one time
e.g., Add of 4 pairs of words

¢ Hardware descriptions
All gates functioning in

ﬂarallel at same time
€S61C L20 Thread Level Parallelism | (18)

struction Unit(s
Haa (s) Unit(s)

wiein
ieieist o+By/A+B./A,+B,/A,+B.

e

Main Memory .~
CED) Logic Gates
L1~

Do

EED, arcia, Lustig Fall 2014 © UCB

Thoughts about Threads

“Although threads seem to be a small step from sequential
computation, in fact, they represent a huge step. They discard the
most essential and appealing properties of sequential computation:
understandability, predictability, and determinism. Threads, as a
model of computation, are wildly non-deterministic, and the job of
the programmer becomes one of pruning that nondeterminism.”
— The Problem with Threads, Edward A. Lee, UC Berkeley, 2006

Q €S61C 120 Thread Level Parallelism | (19)

Garcia, Lustig Fall 2014 © UCB

Background: Threads

* A Thread stands for “thread of execution”, is a single
stream of instructions

— A program / process can split, or fork itself into separate
threads, which can (in theory) execute simultaneously. p..

— An easy way to describe/think about parallelism

* Asingle CPU can execute many threads by
Time Division Multipexing
M Thread,
SO e ———,
Time > M Thread,
* Multithreading is running multiple threads through
the same hardware

Q €S61C 120 Thread Level Parallelism 1 (20)

Time

Garcia, Lustig Fall 2014 © UCB

Parallel Processing:
Multiprocessor Systems (MIMD)

* Multiprocessor (MIMD): a computer system with at least 2 processors

Processor

’ Processor

Processor
f f
’ Cache ‘ ’ Cache ‘
! !

[Interconnection Network]

[wemoy | [o]

1. Deliver high throughput for independent jobs via job-level parallelism
2. Improve the run time of a single program that has been specially
crafted to run on a multiprocessor - a parallel processing program

Now Use term core for processor (“Multicore”) because
“Multiprocessor Microprocessor” too redundant

w €S61C 120 Thread Level Parallelism | (21)

Garcia, Lustig Fall 2014 © UCB

Transition to Multicore

~ AMD Phenom (4 cores)

:Intel i Transistors
1 06 [/ (Thousands)
H Parallel App
10% Lo ItPetformance
; Pentium:Pro ; tial A
: .~ Sequential App
104 L ... Performance.
Frequency
B x MHz
> : ‘ ‘ ‘ Typical Power
10" ¢ T(Watts)
1 : :] : : i Number
10 Fro Tt T e e g of Cores
10° F- : :
—

1975 1980 1985 1990 1995 2000 2005 2010 2015

a partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Har

)ucs

Multiprocessors and You

* Only path to performance is parallelism
— Clock rates flat or declining
— SIMD: 2X width every 3-4 years
+ 128b wide now, 256b 2011, 512b in 2014?, 1024b in 2018?
* Advanced Vector Extensions are 256-bits wide!
— MIMD: Add 2 cores every 2 years: 2, 4, 6, 8, 10, ...

* A key challenge is to craft parallel programs that have
high performance on multiprocessors as the number of
processors increase —i.e., that scale

— Scheduling, load balancing, time for synchronization,
overhead for communication

* Will explore this further in labs and projects

w €S61C 120 Thread Level Parallelism | (23)

Garcia, Lustig Fall 2014 © UCB

Parallel Performance Over Time

Year Cores SIMD bits /Core Sfﬁlgeb?ts PﬁngDs e
2003 2 128 256 4
2005 4 128 512 8
2007 6 128 768 12
2009 8 128 1024 16
2011 10 256 2560 40
2013 12 256 3072 48
2015 14 512 7168 112
2017 16 512 8192 128
2019 18 1024 18432 288

1024, 20480 320

2021 20
Q €S61C 120 Thread Level Parallelism 1 (24)

Garcia, Lustig Fall 2014 © UCB

So, In Conclusion...

* Sequential software is slow software
— SIMD and MIMD only path to higher performance
* SSE Intrinsics allow SIMD instructions to be
invoked from C programs

* MIMD uses multithreading to achieve high
parallelism

w €S61C 120 Thread Level Parallelism | (25)

Garcia, Lustig Fall 2014 © UCB

