inst.eecs.berkeley.edu/~c UC Berkeley CS61C : Machine	
Lecture 25 – Representations of Combinational Log	gic Circuits
Senior Lecturer SOE Dan	
Conway's Life Logic Gates ⇒ Berlekamp, Conway and	
Guy in their "Winning Ways" series showed how a glider was a 1, no	
glider a 0, & how to build logic gates! en.wikipedia.org/wiki/Conway%27s_(csticL25 Representations of Combinational Load Circuit (1)	Game_of_Life

TT Example #1: 1	iff or	ne (not both) a,b=1
а	b	У
0	0	0
0	1	1
1	0	1
1	1	0
CS81C L25 Representations of Combinational Logic	Circuits (4)	' Garcia, Fall 2014 ⊕ U

	TT Example #3: 32-bit unsigned adder			
	A B		C	
-	000 0	000 0	000 00	
	000 0	000 1	000 01	
	•	•	• How	
	•	•	. Many Bows?	
	•	•	•	
	111 1	111 1	111 10	
G	CS61C L25 Representations of Com	ibinational Logic Circuits (6)	Garcia, Fall 2014 © UCB	

TT Example	#4:	3-in	put	majorit	y circuit	_
	а	b	c	У		
	0	0	0	0		
	0	0	1	0		
	0	1	0	0		
	0	1	1	1		
	1	0	0	0		
	1	0	1	1		
	1	1	0	1		
Ca	1	1	1	1		
CS61C L25 Representations of Co	mbinational L	ogic Circuits	(7)		Garcia, Fall 2014 ©	UCB

2-input gates extend to	o n-i	nput	ts	
N-input XOR is the	а	b	с	У
 N-input XOR is the only one which isn't so obvious 	0	0	0	0
 It's simple: XOR is a 1 iff the # of 1s at its 	0	0	1	1
1 iff the # of 1s at its input is odd ⇒	0	1	0	1
	0	1	1	0
	1	0	0	1
	1	0	1	0
	1	1	0	0
0	1	1	1	1
CS61C L25 Representations of Combinational Logic Circuits (11)				Garcia, Fall 20

Administrivia	
 How many hours on project 	2 so far?
a) 0-10	
b) 10-20	
c) 30-40	
d) 50-60	
e) 60-70	
CA	
CS61C L25 Representations of Combinational Logic Circuits (14)	Garcia, Fall 2014 © UCB

Laws of Bo	oolean Algebra	
$\begin{aligned} x \cdot \overline{x} &= 0\\ x \cdot 0 &= 0 \end{aligned}$	$\begin{aligned} x + \overline{x} &= 1\\ x + 1 &= 1 \end{aligned}$	complementarity laws of 0's and 1's
$x \cdot 1 = x$ $x \cdot x = x$ $x \cdot y = y \cdot x$ $(xy)z = x(yz)$	x + 0 = x $x + x = x$ $x + y = y + x$ $(x + y) + z = x + (y + z)$	identities idempotent law commutativity associativity
(0)	$x + yz = (x + y)(x + z)$ $(x + y)x = x$ $(\overline{x} + y)x = xy$	distribution uniting theorem uniting theorem v.2
$\overline{x \cdot y} = \overline{x} + \overline{y}$	$\overline{x+y} = \overline{x} \cdot \overline{y}$	DeMorgan's Law
CS61C L25 Representations of	Combinational Logic Circuits (19)	Garcia, Fall 2014 © U

