

2-input gates extend to n -inputs			
- N -input XOR is the only one which isn't so obvious	a	b c	y
		00	0
- It's simple: XOR is a 1 iff the \# of 1 s at its input is odd \Rightarrow	0	01	1
		10	1
Cal		11	0
		$0 \quad 0$	1
		01	0
		10	0
		11	1

Boolean Algebraic Simplification Example
$\begin{aligned} y & =a b+a+c & & \\ & =a(b+1)+c & & \text { distribution, identity } \\ & =a(1)+c & & \text { law of l's } \\ & =a+c & & \text { identity } \end{aligned}$

Peer Instruction

1) $(a+b) \cdot(\bar{a}+b)=b$
2) N -input gates can be thought of cascaded 2 -input gates. I.e., $(\mathrm{a} \Delta \mathrm{bc} \Delta \mathrm{d} \Delta \mathrm{e})=\mathrm{a} \Delta(\mathrm{bc} \Delta(\mathrm{d} \Delta \mathrm{e})$) where Δ is one of AND, OR, XOR, NAND
3) You can use NOR(s) with clever wiring
to simulate AND, OR, \& NOT
123
a: FFF
a: FFT
b: FTF
b: FTT
c: TFF
$\begin{array}{ll}\text { c: } & \text { TFF } \\ \text { d: } & \text { TFT }\end{array}$

d: TTF	
e:	TTT

