MineCraft Logic Gates

Using redstone circuits, which are “structures that can be built to active or control mechanisms”, you can create all the logic gates using MineCraft.

minecraft.gamepedia.com/Tutorials/Basic_Logic_Gates

Review

• Use this table and techniques we learned to transform from 1 to another

Today

• Data Multiplexors
• Arithmetic and Logic Unit
• Adder/Subtractor

Data Multiplexor (here 2-to-1, n-bit-wide)

Data Multiplexor (here 2-to-1, n-bit-wide)

N instances of 1-bit-wide mux

How many rows in TT?

How do we build a 1-bit-wide mux?

\[c = s \overline{a}b + s\overline{a} + s\overline{a}b + sb \]

\[= s(\overline{a}b + ab) + s(\overline{a}b + ab) \]

\[= s(\overline{b} + b) + s((\overline{a} + a)b) \]

\[= s(1) + s((1)b) \]

\[= s + sb \]
4-to-1 Multiplexor?

How many rows in TT?

\[\begin{align*}
 e &= \overline{s}_1 \overline{s}_0 a + s_1 s_0 b + s_1 s_0 c + s_1 s_0 d \\
 \overline{s} &= s_1 s_0
\end{align*} \]

Is there any other way to do it?

Hint: NCAA tourney!

Ans: Hierarchically!

Arithmetic and Logic Unit

- Most processors contain a special logic block called “Arithmetic and Logic Unit” (ALU)
- We’ll show you an easy one that does ADD, SUB, bitwise AND, bitwise OR

Our simple ALU

Adder/Subtracter Design -- how?

- Truth-table, then determine canonical form, then minimize and implement as we’ve seen before
- Look at breaking the problem down into smaller pieces that we can cascade or hierarchically layer

Administrivia

- How did you find project 2?
 a) Hated it
 b) Disliked it
 c) Neutral
 d) Liked it
 e) Loved it
Adder/Subtractor – One-bit adder LSBN 3
\[
\begin{array}{c|c|c|c|c}
 a_3 & a_2 & a_1 & a_0 \\
 + & b_3 & b_2 & b_1 & b_0 \\
\hline
 s_3 & s_2 & s_1 & s_0 \\
\end{array}
\]
\[
\begin{align*}
s_0 &= \quad c_1 \\
\end{align*}
\]

Adder/Subtractor – One-bit adder (1/2)
\[
\begin{array}{c|c|c|c|c|c|c|c}
 a_i & b_i & c_i & s_i & c_{i+1} \\
\hline
 0 & 0 & 0 & 0 & 0 \\
 0 & 1 & 1 & 0 & 0 \\
 1 & 0 & 1 & 0 & 0 \\
 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

Adder/Subtractor – One-bit adder (2/2)
\[
\begin{align*}
s_i &= \text{XOR}(a_i, b_i, c_i) \\
c_{i+1} &= \text{MAJ}(a_i, b_i, c_i) = a_i b_i + a_i c_i + b_i c_i
\end{align*}
\]

N 1-bit adders \(\Rightarrow \) 1 N-bit adder

What about overflow?
Overflow = \(c_n \)

What about overflow?

Consider a 2-bit signed \# & overflow:
- \(10 = -2 \) + -2 or -1
- \(11 = -1 \) + -2 only
- \(00 = 0 \) NOTHING!
- \(01 = 1 \) + 1 only

Highest adder
- \(C_1 = \text{Carry-in} = \text{C}_{in} \)
- \(C_2 = \text{Carry-out} = \text{C}_{out} \)
- No \(C_{out} \) or \(C_{in} \) \(\Rightarrow \) NO overflow!
- \(C_{in} \) and \(C_{out} \) \(\Rightarrow \) NO overflow!

What op?
- \(C_{in} \) but no \(C_{out} \) \(\Rightarrow \) A,B both > 0, overflow!
- \(C_{out} \) but no \(C_{in} \) \(\Rightarrow \) A,B both < 0, overflow!

\[
\begin{align*}
\text{overflow} &= C_n \ \text{XOR} \ C_{n-1}
\end{align*}
\]
Extremely Clever Subtractor

XOR serves as conditional inverter!

Peer Instruction

1) Truth table for mux with 4-bits of signals has 2^4 rows

2) We could cascade N 1-bit shifters to make 1 N-bit shifter for sll, srl

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>XOR(x,y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

“And In conclusion...”

- Use muxes to select among input
 - S input bits selects 2^S inputs
 - Each input can be n-bits wide, indep of S
- Can implement muxes hierarchically
- ALU can be implemented using a mux
 - Coupled with basic block elements
- N-bit adder-subtractor done using N 1-bit adders with XOR gates on input
 - XOR serves as conditional inverter