
CS 61C Fall 2015
Guerrilla Section 1: Number Representation & C

Question 0: Silly Rabbit, Trits Are for Kids
A new memory technology with three distinct states is exploding into the technology
industry! Let’s see if we can’t develop some new number representations to take
advantage of this new development.

(a) First, define a rule, analogous to what we use for binary numerals, for determining the
unsigned value of a ternary numeral dn, dn-1 . . . d0, and use this rule to convert 21023 into
decimal:

 unsigned(dn, dn-1 . . . d0) = 3! ∙ 𝑑!!
!!!

unsigned(21023) = 65

(b) Next we’d like to define an analogue to two’s complement for ternary numerals, which
we’ll call three’s complement. Three’s complement numbers should be as evenly
distributed between positive and negative as possible (favor negative if necessary),
should have a zero at 03, and should increase in value when incremented as an unsigned
value (except in the case of overflow). Define a rule for negating a three’s complement
number.

 “flip” all of the trits (replace 2s with 0s, 0s with 2s), and add 1

(c) What is the most positive possible three’s complement 8-trit number? Using this result,
specify a rule for determining if a three’s complement number is positive or negative.

1 . . . 13. A number is negative if it has unsigned magnitude greater than 1 . . . 13

(d) There are two different two’s complement numbers who are their own inverse. Specify
these numbers.

0, 0b10…0

(e) Which numbers in three’s complement are their own inverse?

0

(f) What arithmetic operation is a shift left logical equivalent to with three’s complement
numbers?

Multiplication by a power of three

(g) What arithmetic operation is a shift right arithmetic equivalent to with two’s
complement numbers?

Division	 by	 a	 power	 by	 two,	 followed	 by	 a	 floor	
Question 1: Number Representation

1) Convert the following 8-bit two’s complement numbers from hexadecimal to decimal:

0x80 = -128
0xF4 = -12

0x0E = 14

2) What’s the biggest change to the PC as the result of a jump on a 32-bit MIPS system?

 256 mebibytes

3) Assume that the most significant bit (MSB) of x is a 0. We store the result of flipping
x’s bits into y. Interpreted in the following number representations, how large is the
magnitude of y relative to the magnitude of x? Circle ONE choice per row.

Unsigned |y| < |x| |y| = |x| |y| >|x| Can’t Tell
One’s Complement |y| < |x| |y| = |x| |y| >|x| Can’t Tell
Two’s Complement |y| < |x| |y| = |x| |y| >|x| Can’t Tell
Sign and Magnitude |y| < |x| |y| = |x| |y| >|x| Can’t Tell

• In unsigned, a number with the MSB of 1 is always greater than one with a MSB of 0.
• In one’s complement, flipping all of the bits is the negation procedure, so the magnitude will be the same. •
In two’s complement, y is a negative number. Its magnitude can be found by applying the negation
procedure, which is flipping the bits and then adding 1, resulting in a larger magnitude than x.
• In sign and magnitude, the 2nd MSB bit will determine the relative magnitudes of x and y, so you can’t tell
for certain.
	
Question 2: C strings/pointers (Fa03, Q2)
a. (2pts) Given the following declarations:
char a[14] = “pointers in c”;
char c = ‘b’;
char *p1 = &c, **p2 = &p1;

Cross out any of the following statements that are not correct C:
p1 = a + 5;
 The "a" without a subscript means &a[0], a constant of type pointer-to-char.
Adding an integer to a pointer is legal, and returns a pointer-to-char, which matches
the type of p1, so the assignment is LEGAL.
&p1 = &a[0];
 Any expression starting with & is a constant, not a variable, so this is an attempt
to assign a value to a constant, like saying 3 = 4; so it's ILLEGAL.
p2 = a;
 Again, "a" means &a[0], a constant of type pointer-to-char. But p2 is of type
pointer-to-pointer-to-char, so this is a type mismatch and is ILLEGAL. It would be
legal, although weird, with an explicit cast: p2 = (char **)a;
*(a + 10) = ‘t’;
 The "a+10" is a valid expression of type pointer-to-char, like a+5 in the first
statement. So *(a+10) is a variable of type char, and we are assigning a char value to
it, so this is LEGAL.
*p2 = %c;
 p2 is of type pointer-to-pointer-to-char, so *p2 is a variable of type pointer-to-
char. &c is a constant of type pointer-to-char. These match, so this assignment is
LEGAL

b. (3pts) Consider the following C program.
#include <stdio.h>

char* set(char c, int i) {

/* See below for line to insert here */
str[i] = c; Return
str;

}

int main(){

char* output;

output = set(‘o’, 2); output
= set(‘w’, 0); output =
set(‘r’, 1);

printf(“%s”, output);

return 0;

}

For each of the following lines inserted as indicated into procedure set,
what is printed when the program executes? (If the program causes an
error during compilation, say “compilation error”; if it causes an error or
undefined results while running, say “runtime error.”)

a1) static char str[] = “thing”;

This allocates a six-byte character array (including a byte for the null at
the end) in global data space. Every call to set() refers to this same array. So
each of the three calls changes one character: thing -> thong -> whong ->
wrong. So the result that's printed is "wrong".

a2) char str[] = “thing”;

This allocates a new six-byte array on the stack for each call, then
returns the address of that stack array, but the stack frame containing it is
deallocated when set() returns. So what will be printed is whatever the call to
printf() puts at that address on the stack! The result is therefore undefined, or
a runtime error.

a3) char *str = malloc(6);

strcpy(str, “thing”)
This heap-allocates a new six-byte array for each call. Each array has

the initial value "thing" and then one character is changed. So the first two
calls have essentially no effect; the third call changes thing -> tring, and
"tring" is printed

Question 3: C Memory management
	

	
Question 4: Memory management in C (Fa06, M2)

	
	
	
	
	
	
	
	
	

